142 lines
10 KiB
Markdown
142 lines
10 KiB
Markdown
English | [简体中文](README_ch.md)
|
||
|
||
## Introduction
|
||
PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice.
|
||
|
||
**Recent updates**
|
||
|
||
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipline](#PP-OCR)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
|
||
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
|
||
- 2020.8.24 Support the use of PaddleOCR through whl package installation,pelease refer [PaddleOCR Package](./doc/doc_en/whl_en.md)
|
||
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
|
||
- [more](./doc/doc_en/update_en.md)
|
||
|
||
## Features
|
||
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
|
||
- Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
|
||
- General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
|
||
- Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
|
||
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
|
||
- Support multi-language recognition: Korean, Japanese, German, French
|
||
- Support user-defined training, provides rich predictive inference deployment solutions
|
||
- Support PIP installation, easy to use
|
||
- Support Linux, Windows, MacOS and other systems
|
||
|
||
## Visualization
|
||
|
||
<div align="center">
|
||
<img src="doc/imgs_results/1101.jpg" width="800">
|
||
<img src="doc/imgs_results/1103.jpg" width="800">
|
||
</div>
|
||
|
||
The above picture is the effect display of the general ppocr_server model. For more effect pictures, please see [More visualization](./doc/doc_en/visualization_en.md).
|
||
|
||
## Quick Experience
|
||
|
||
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
|
||
|
||
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
|
||
|
||
Also, you can scan the QR code below to install the App (**Android support only**)
|
||
|
||
<div align="center">
|
||
<img src="./doc/ocr-android-easyedge.png" width = "200" height = "200" />
|
||
</div>
|
||
|
||
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)
|
||
|
||
<a name="Supported-Chinese-model-list"></a>
|
||
|
||
## PP-OCR 1.1 series model list(Update on Sep 17)
|
||
|
||
| Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model |
|
||
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||
| Chinese and English ultra-lightweight OCR model (8.1M) | ch_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |
|
||
| Chinese and English general OCR model (155.1M) | ch_ppocr_server_v1.1_xx | Server | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |
|
||
| Chinese and English ultra-lightweight compressed OCR model (3.5M) | ch_ppocr_mobile_slim_v1.1_xx | Mobile | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_cls_quant_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
|
||
|
||
For more model downloads (including multiple languages), please refer to [PP-OCR v1.1 series model downloads](./doc/doc_en/models_list_en.md)
|
||
|
||
|
||
## Tutorials
|
||
- [Installation](./doc/doc_en/installation_en.md)
|
||
- [Quick Start](./doc/doc_en/quickstart_en.md)
|
||
- [Code Structure](./doc/doc_en/tree_en.md)
|
||
- Algorithm introduction
|
||
- [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
|
||
- [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
|
||
- [PP-OCR Pipline](#PP-OCR-Pipline)
|
||
- Model training/evaluation
|
||
- [Text Detection](./doc/doc_en/detection_en.md)
|
||
- [Text Recognition](./doc/doc_en/recognition_en.md)
|
||
- [Direction Classification](./doc/doc_en/angle_class_en.md)
|
||
- [Yml Configuration](./doc/doc_en/config_en.md)
|
||
- Inference and Deployment
|
||
- [Quick inference based on pip](./doc/doc_en/whl_en.md)
|
||
- [Python Inference](./doc/doc_en/inference_en.md)
|
||
- [C++ Inference](./deploy/cpp_infer/readme_en.md)
|
||
- [Serving](./deploy/hubserving/readme_en.md)
|
||
- [Mobile](./deploy/lite/readme_en.md)
|
||
- [Model Quantization](./deploy/slim/quantization/README_en.md)
|
||
- [Model Compression](./deploy/slim/prune/README_en.md)
|
||
- [Benchmark](./doc/doc_en/benchmark_en.md)
|
||
- Datasets
|
||
- [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
|
||
- [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
|
||
- [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
|
||
- [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
|
||
- [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
|
||
- [Visualization](#Visualization)
|
||
- [FAQ](./doc/doc_en/FAQ_en.md)
|
||
- [Community](#Community)
|
||
- [References](./doc/doc_en/reference_en.md)
|
||
- [License](#LICENSE)
|
||
- [Contribution](#CONTRIBUTION)
|
||
|
||
<a name="PP-OCR-Pipline"></a>
|
||
|
||
## PP-OCR Pipline
|
||
|
||
<div align="center">
|
||
<img src="./doc/ppocr_framework.png" width="800">
|
||
</div>
|
||
|
||
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (Arxiv article link is being generated).
|
||
|
||
PP-OCR technical article: [Download link](https://github.com/PaddlePaddle/PaddleOCR/raw/develop/doc/PPOCR.pdf)
|
||
|
||
## Visualization [more](./doc/doc_en/visualization_en.md)
|
||
|
||
<div align="center">
|
||
<img src="./doc/imgs_results/1102.jpg" width="800">
|
||
<img src="./doc/imgs_results/1104.jpg" width="800">
|
||
<img src="./doc/imgs_results/1106.jpg" width="800">
|
||
<img src="./doc/imgs_results/1105.jpg" width="800">
|
||
<img src="./doc/imgs_results/1110.jpg" width="800">
|
||
<img src="./doc/imgs_results/1112.jpg" width="800">
|
||
</div>
|
||
|
||
<a name="Community"></a>
|
||
## Community
|
||
Scan the QR code below with your Wechat and completing the questionnaire, you can access to offical technical exchange group.
|
||
|
||
<div align="center">
|
||
<img src="./doc/joinus.PNG" width = "200" height = "200" />
|
||
</div>
|
||
|
||
<a name="LICENSE"></a>
|
||
## License
|
||
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
|
||
|
||
<a name="CONTRIBUTION"></a>
|
||
## Contribution
|
||
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
|
||
|
||
- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
|
||
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
|
||
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
|
||
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
|
||
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
|
||
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
|
||
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
|