PaddleOCR/ppocr/modeling/architectures/det_model.py

147 lines
5.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy
class DetModel(object):
def __init__(self, params):
"""
Detection module for OCR text detection.
args:
params (dict): the super parameters for detection module.
"""
global_params = params['Global']
self.algorithm = global_params['algorithm']
backbone_params = deepcopy(params["Backbone"])
backbone_params.update(global_params)
self.backbone = create_module(backbone_params['function'])\
(params=backbone_params)
head_params = deepcopy(params["Head"])
head_params.update(global_params)
self.head = create_module(head_params['function'])\
(params=head_params)
loss_params = deepcopy(params["Loss"])
loss_params.update(global_params)
self.loss = create_module(loss_params['function'])\
(params=loss_params)
self.image_shape = global_params['image_shape']
def create_feed(self, mode):
"""
create Dataloader feeds
args:
mode (str): 'train' for training or else for evaluation
return: (image, corresponding label, dataloader)
"""
image_shape = deepcopy(self.image_shape)
if image_shape[1] % 4 != 0 or image_shape[2] % 4 != 0:
raise Exception("The size of the image must be divisible by 4, "
"received image shape is {}, please reset the "
"Global.image_shape in the yml file".format(
image_shape))
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if mode == "train":
if self.algorithm == "EAST":
h, w = int(image_shape[1] // 4), int(image_shape[2] // 4)
score = fluid.layers.data(
name='score', shape=[1, h, w], dtype='float32')
geo = fluid.layers.data(
name='geo', shape=[9, h, w], dtype='float32')
mask = fluid.layers.data(
name='mask', shape=[1, h, w], dtype='float32')
feed_list = [image, score, geo, mask]
labels = {'score': score, 'geo': geo, 'mask': mask}
elif self.algorithm == "DB":
shrink_map = fluid.layers.data(
name='shrink_map', shape=image_shape[1:], dtype='float32')
shrink_mask = fluid.layers.data(
name='shrink_mask', shape=image_shape[1:], dtype='float32')
threshold_map = fluid.layers.data(
name='threshold_map',
shape=image_shape[1:],
dtype='float32')
threshold_mask = fluid.layers.data(
name='threshold_mask',
shape=image_shape[1:],
dtype='float32')
feed_list=[image, shrink_map, shrink_mask,\
threshold_map, threshold_mask]
labels = {'shrink_map':shrink_map,\
'shrink_mask':shrink_mask,\
'threshold_map':threshold_map,\
'threshold_mask':threshold_mask}
elif self.algorithm == "SAST":
input_score = fluid.layers.data(
name='score', shape=[1, 128, 128], dtype='float32')
input_border = fluid.layers.data(
name='border', shape=[5, 128, 128], dtype='float32')
input_mask = fluid.layers.data(
name='mask', shape=[1, 128, 128], dtype='float32')
input_tvo = fluid.layers.data(
name='tvo', shape=[9, 128, 128], dtype='float32')
input_tco = fluid.layers.data(
name='tco', shape=[3, 128, 128], dtype='float32')
feed_list = [image, input_score, input_border, input_mask, input_tvo, input_tco]
labels = {'input_score': input_score,\
'input_border': input_border,\
'input_mask': input_mask,\
'input_tvo': input_tvo,\
'input_tco': input_tco}
loader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=64,
use_double_buffer=True,
iterable=False)
else:
labels = None
loader = None
return image, labels, loader
def __call__(self, mode):
"""
run forward of defined module
args:
mode (str): 'train' for training; 'export' for inference,
others for evaluation]
"""
image, labels, loader = self.create_feed(mode)
conv_feas = self.backbone(image)
if self.algorithm == "DB":
predicts = self.head(conv_feas, mode)
else:
predicts = self.head(conv_feas)
if mode == "train":
losses = self.loss(predicts, labels)
return loader, losses
elif mode == "export":
return [image, predicts]
else:
return loader, predicts