PaddleOCR/README_cn.md

13 KiB
Raw Blame History

English | 简体中文

简介

PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。

近期更新

  • 2020.8.16 开源文本检测算法SAST和文本识别算法SRN
  • 2020.7.23 发布7月21日B站直播课回放和PPTPaddleOCR开源大礼包全面解读获取地址
  • 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO支持iOS和Android系统
  • 2020.7.15 完善预测部署添加基于C++预测引擎推理、服务化部署和端侧部署方案以及超轻量级中文OCR模型预测耗时Benchmark
  • 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具
  • more

特性

  • 超轻量级中文OCR模型总模型仅8.6M
    • 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    • 检测模型DB4.1M+识别模型CRNN4.5M
  • 实用通用中文OCR模型
  • 多种预测推理部署方案,包括服务部署和端侧部署
  • 多种文本检测训练算法EAST、DB
  • 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE
  • 可运行于Linux、Windows、MacOS等多种系统

快速体验

上图是超轻量级中文OCR模型效果展示更多效果图请见效果展示页面

中文OCR模型列表

模型名称 模型简介 检测模型地址 识别模型地址 支持空格的识别模型地址
chinese_db_crnn_mobile 超轻量级中文OCR模型 inference模型 / 预训练模型 inference模型 / 预训练模型 inference模型 / 预训练模型
chinese_db_crnn_server 通用中文OCR模型 inference模型 / 预训练模型 inference模型 / 预训练模型 inference模型 / 预训练模型

文档教程

算法介绍

1.文本检测算法

PaddleOCR开源的文本检测算法列表

在ICDAR2015文本检测公开数据集上算法效果如下

模型 骨干网络 precision recall Hmean 下载链接
EAST ResNet50_vd 88.18% 85.51% 86.82% 下载链接
EAST MobileNetV3 81.67% 79.83% 80.74% 下载链接
DB ResNet50_vd 83.79% 80.65% 82.19% 下载链接
DB MobileNetV3 75.92% 73.18% 74.53% 下载链接
SAST ResNet50_vd 92.18% 82.96% 87.33% 下载链接

在Total-text文本检测公开数据集上算法效果如下

模型 骨干网络 precision recall Hmean 下载链接
SAST ResNet50_vd 88.74% 79.80% 84.03% 下载链接

说明: SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载百度云地址 (提取码: 2bpi)

使用LSVT街景数据集共3w张数据训练中文检测模型的相关配置和预训练文件如下

模型 骨干网络 配置文件 预训练模型
超轻量中文模型 MobileNetV3 det_mv3_db.yml 下载链接
通用中文OCR模型 ResNet50_vd det_r50_vd_db.yml 下载链接
  • 注: 上述DB模型的训练和评估需设置后处理参数box_thresh=0.6unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化

PaddleOCR文本检测算法的训练和使用请参考文档教程中模型训练/评估中的文本检测部分

2.文本识别算法

PaddleOCR开源的文本识别算法列表

参考DTRB文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下

模型 骨干网络 Avg Accuracy 模型存储命名 下载链接
Rosetta Resnet34_vd 80.24% rec_r34_vd_none_none_ctc 下载链接
Rosetta MobileNetV3 78.16% rec_mv3_none_none_ctc 下载链接
CRNN Resnet34_vd 82.20% rec_r34_vd_none_bilstm_ctc 下载链接
CRNN MobileNetV3 79.37% rec_mv3_none_bilstm_ctc 下载链接
STAR-Net Resnet34_vd 83.93% rec_r34_vd_tps_bilstm_ctc 下载链接
STAR-Net MobileNetV3 81.56% rec_mv3_tps_bilstm_ctc 下载链接
RARE Resnet34_vd 84.90% rec_r34_vd_tps_bilstm_attn 下载链接
RARE MobileNetV3 83.32% rec_mv3_tps_bilstm_attn 下载链接
SRN Resnet50_vd_fpn 88.33% rec_r50fpn_vd_none_srn 下载链接

说明: SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广增广后的数据可以在百度网盘上下载,提取码: y3ry。 原始论文使用两阶段训练平均精度为89.74%PaddleOCR中使用one-stage训练平均精度为88.33%。两种预训练权重均在下载链接中。

使用LSVT街景数据集根据真值将图crop出来30w数据进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型相关配置和预训练文件如下

模型 骨干网络 配置文件 预训练模型
超轻量中文模型 MobileNetV3 rec_chinese_lite_train.yml 下载链接
通用中文OCR模型 Resnet34_vd rec_chinese_common_train.yml 下载链接

PaddleOCR文本识别算法的训练和使用请参考文档教程中模型训练/评估中的文本识别部分

3.端到端OCR算法

效果展示

1.超轻量级中文OCR效果展示 more

2.通用中文OCR效果展示 more

3.支持空格的中文OCR效果展示 more

FAQ

  1. 转换attention识别模型时报错KeyError: 'predict'
    问题已解,请更新到最新代码。

  2. 关于推理速度
    图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num默认值为30可以改为10或其他数值。

  3. 服务部署与移动端部署
    预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案欢迎持续关注。

  4. 自研算法发布时间
    自研算法SAST、SRN、End2End-PSL都将在7-8月陆续发布敬请期待。

more

欢迎加入PaddleOCR技术交流群

请扫描下面二维码完成问卷填写获取加群二维码和OCR方向的炼丹秘籍

许可证书

本项目的发布受Apache 2.0 license许可认证。

贡献代码

我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。

  • 非常感谢 Khanh TranKarl Horky 贡献修改英文文档
  • 非常感谢 zhangxin(Blog) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
  • 非常感谢 lyl120117 贡献打印网络结构的代码
  • 非常感谢 xiangyubo 贡献手写中文OCR数据集
  • 非常感谢 authorfu 贡献Android和xiadeye 贡献IOS的demo代码
  • 非常感谢 BeyondYourself 给PaddleOCR提了很多非常棒的建议并简化了PaddleOCR的部分代码风格。
  • 非常感谢 tangmq 给PaddleOCR增加Docker化部署服务支持快速发布可调用的Restful API服务。