77 lines
2.3 KiB
Python
Executable File
77 lines
2.3 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import paddle
|
|
from paddle.jit import to_static
|
|
|
|
from ppocr.modeling.architectures import build_model
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.utils.save_load import init_model
|
|
from tools.program import load_config
|
|
from tools.program import merge_config
|
|
|
|
|
|
def parse_args():
|
|
def str2bool(v):
|
|
return v.lower() in ("true", "t", "1")
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-c", "--config", help="configuration file to use")
|
|
parser.add_argument(
|
|
"-o", "--output_path", type=str, default='./output/infer/')
|
|
return parser.parse_args()
|
|
|
|
|
|
class Model(paddle.nn.Layer):
|
|
def __init__(self, model):
|
|
super(Model, self).__init__()
|
|
self.pre_model = model
|
|
|
|
# Please modify the 'shape' according to actual needs
|
|
@to_static(input_spec=[
|
|
paddle.static.InputSpec(
|
|
shape=[None, 3, 32, None], dtype='float32')
|
|
])
|
|
def forward(self, inputs):
|
|
x = self.pre_model(inputs)
|
|
return x
|
|
|
|
|
|
def main():
|
|
FLAGS = parse_args()
|
|
config = load_config(FLAGS.config)
|
|
merge_config(FLAGS.opt)
|
|
|
|
# build post process
|
|
post_process_class = build_post_process(config['PostProcess'],
|
|
config['Global'])
|
|
|
|
# build model
|
|
#for rec algorithm
|
|
if hasattr(post_process_class, 'character'):
|
|
char_num = len(getattr(post_process_class, 'character'))
|
|
config['Architecture']["Head"]['out_channels'] = char_num
|
|
model = build_model(config['Architecture'])
|
|
init_model(config, model, logger)
|
|
model.eval()
|
|
|
|
model = Model(model)
|
|
paddle.jit.save(model, FLAGS.output_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|