217 lines
7.0 KiB
Python
217 lines
7.0 KiB
Python
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
import math
|
|
import cv2
|
|
import numpy as np
|
|
import json
|
|
import sys
|
|
from ppocr.utils.utility import initial_logger, check_and_read_gif
|
|
logger = initial_logger()
|
|
|
|
from .data_augment import AugmentData
|
|
from .random_crop_data import RandomCropData
|
|
from .make_shrink_map import MakeShrinkMap
|
|
from .make_border_map import MakeBorderMap
|
|
|
|
|
|
class DBProcessTrain(object):
|
|
"""
|
|
DB pre-process for Train mode
|
|
"""
|
|
|
|
def __init__(self, params):
|
|
self.img_set_dir = params['img_set_dir']
|
|
self.image_shape = params['image_shape']
|
|
|
|
def order_points_clockwise(self, pts):
|
|
rect = np.zeros((4, 2), dtype="float32")
|
|
s = pts.sum(axis=1)
|
|
rect[0] = pts[np.argmin(s)]
|
|
rect[2] = pts[np.argmax(s)]
|
|
diff = np.diff(pts, axis=1)
|
|
rect[1] = pts[np.argmin(diff)]
|
|
rect[3] = pts[np.argmax(diff)]
|
|
return rect
|
|
|
|
def make_data_dict(self, imgvalue, entry):
|
|
boxes = []
|
|
texts = []
|
|
ignores = []
|
|
for rect in entry:
|
|
points = rect['points']
|
|
transcription = rect['transcription']
|
|
try:
|
|
box = self.order_points_clockwise(
|
|
np.array(points).reshape(-1, 2))
|
|
if cv2.contourArea(box) > 0:
|
|
boxes.append(box)
|
|
texts.append(transcription)
|
|
ignores.append(transcription in ['*', '###'])
|
|
except:
|
|
print('load label failed!')
|
|
data = {
|
|
'image': imgvalue,
|
|
'shape': [imgvalue.shape[0], imgvalue.shape[1]],
|
|
'polys': np.array(boxes),
|
|
'texts': texts,
|
|
'ignore_tags': ignores,
|
|
}
|
|
return data
|
|
|
|
def NormalizeImage(self, data):
|
|
im = data['image']
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
img_std = [0.229, 0.224, 0.225]
|
|
im = im.astype(np.float32, copy=False)
|
|
im = im / 255
|
|
im -= img_mean
|
|
im /= img_std
|
|
channel_swap = (2, 0, 1)
|
|
im = im.transpose(channel_swap)
|
|
data['image'] = im
|
|
return data
|
|
|
|
def FilterKeys(self, data):
|
|
filter_keys = ['polys', 'texts', 'ignore_tags', 'shape']
|
|
for key in filter_keys:
|
|
if key in data:
|
|
del data[key]
|
|
return data
|
|
|
|
def convert_label_infor(self, label_infor):
|
|
label_infor = label_infor.decode()
|
|
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
|
|
substr = label_infor.strip("\n").split("\t")
|
|
img_path = self.img_set_dir + substr[0]
|
|
label = json.loads(substr[1])
|
|
return img_path, label
|
|
|
|
def __call__(self, label_infor):
|
|
img_path, gt_label = self.convert_label_infor(label_infor)
|
|
imgvalue, flag = check_and_read_gif(img_path)
|
|
if not flag:
|
|
imgvalue = cv2.imread(img_path)
|
|
if imgvalue is None:
|
|
logger.info("{} does not exist!".format(img_path))
|
|
return None
|
|
if len(list(imgvalue.shape)) == 2 or imgvalue.shape[2] == 1:
|
|
imgvalue = cv2.cvtColor(imgvalue, cv2.COLOR_GRAY2BGR)
|
|
data = self.make_data_dict(imgvalue, gt_label)
|
|
data = AugmentData(data)
|
|
data = RandomCropData(data, self.image_shape[1:])
|
|
data = MakeShrinkMap(data)
|
|
data = MakeBorderMap(data)
|
|
data = self.NormalizeImage(data)
|
|
data = self.FilterKeys(data)
|
|
return data['image'], data['shrink_map'], data['shrink_mask'], data[
|
|
'threshold_map'], data['threshold_mask']
|
|
|
|
|
|
class DBProcessTest(object):
|
|
"""
|
|
DB pre-process for Test mode
|
|
"""
|
|
|
|
def __init__(self, params):
|
|
super(DBProcessTest, self).__init__()
|
|
self.resize_type = 0
|
|
if 'test_image_shape' in params:
|
|
self.image_shape = params['test_image_shape']
|
|
# print(self.image_shape)
|
|
self.resize_type = 1
|
|
if 'max_side_len' in params:
|
|
self.max_side_len = params['max_side_len']
|
|
else:
|
|
self.max_side_len = 2400
|
|
|
|
def resize_image_type0(self, im):
|
|
"""
|
|
resize image to a size multiple of 32 which is required by the network
|
|
args:
|
|
img(array): array with shape [h, w, c]
|
|
return(tuple):
|
|
img, (ratio_h, ratio_w)
|
|
"""
|
|
max_side_len = self.max_side_len
|
|
h, w, _ = im.shape
|
|
|
|
resize_w = w
|
|
resize_h = h
|
|
|
|
# limit the max side
|
|
if max(resize_h, resize_w) > max_side_len:
|
|
if resize_h > resize_w:
|
|
ratio = float(max_side_len) / resize_h
|
|
else:
|
|
ratio = float(max_side_len) / resize_w
|
|
else:
|
|
ratio = 1.
|
|
resize_h = int(resize_h * ratio)
|
|
resize_w = int(resize_w * ratio)
|
|
if resize_h % 32 == 0:
|
|
resize_h = resize_h
|
|
elif resize_h // 32 <= 1:
|
|
resize_h = 32
|
|
else:
|
|
resize_h = (resize_h // 32) * 32
|
|
if resize_w % 32 == 0:
|
|
resize_w = resize_w
|
|
elif resize_w // 32 <= 1:
|
|
resize_w = 32
|
|
else:
|
|
resize_w = (resize_w // 32) * 32
|
|
try:
|
|
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
|
return None, (None, None)
|
|
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
|
except:
|
|
print(im.shape, resize_w, resize_h)
|
|
sys.exit(0)
|
|
ratio_h = resize_h / float(h)
|
|
ratio_w = resize_w / float(w)
|
|
return im, (ratio_h, ratio_w)
|
|
|
|
def resize_image_type1(self, im):
|
|
resize_h, resize_w = self.image_shape
|
|
ori_h, ori_w = im.shape[:2] # (h, w, c)
|
|
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
|
ratio_h = float(resize_h) / ori_h
|
|
ratio_w = float(resize_w) / ori_w
|
|
return im, (ratio_h, ratio_w)
|
|
|
|
def normalize(self, im):
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
img_std = [0.229, 0.224, 0.225]
|
|
im = im.astype(np.float32, copy=False)
|
|
im = im / 255
|
|
im[:, :, 0] -= img_mean[0]
|
|
im[:, :, 1] -= img_mean[1]
|
|
im[:, :, 2] -= img_mean[2]
|
|
im[:, :, 0] /= img_std[0]
|
|
im[:, :, 1] /= img_std[1]
|
|
im[:, :, 2] /= img_std[2]
|
|
channel_swap = (2, 0, 1)
|
|
im = im.transpose(channel_swap)
|
|
return im
|
|
|
|
def __call__(self, im):
|
|
if self.resize_type == 0:
|
|
im, (ratio_h, ratio_w) = self.resize_image_type0(im)
|
|
else:
|
|
im, (ratio_h, ratio_w) = self.resize_image_type1(im)
|
|
im = self.normalize(im)
|
|
im = im[np.newaxis, :]
|
|
return [im, (ratio_h, ratio_w)]
|