PaddleOCR/ppocr/utils/stats.py

66 lines
1.9 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import numpy as np
import datetime
__all__ = ['TrainingStats', 'Time']
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size):
self.deque = collections.deque(maxlen=window_size)
def add_value(self, value):
self.deque.append(value)
def get_median_value(self):
return np.median(self.deque)
def Time():
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
class TrainingStats(object):
def __init__(self, window_size, stats_keys):
self.smoothed_losses_and_metrics = {
key: SmoothedValue(window_size)
for key in stats_keys
}
def update(self, stats):
for k, v in self.smoothed_losses_and_metrics.items():
v.add_value(stats[k])
def get(self, extras=None):
stats = collections.OrderedDict()
if extras:
for k, v in extras.items():
stats[k] = v
for k, v in self.smoothed_losses_and_metrics.items():
stats[k] = round(v.get_median_value(), 6)
return stats
def log(self, extras=None):
d = self.get(extras)
strs = ', '.join(str(dict({x: y})).strip('{}') for x, y in d.items())
return strs