173 lines
6.9 KiB
Markdown
173 lines
6.9 KiB
Markdown
|
||
## 简介
|
||
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
|
||
|
||
## 特性
|
||
- 超轻量级中文OCR,总模型仅8.6M
|
||
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
|
||
- 检测模型DB(4.1M)+识别模型CRNN(4.5M)
|
||
- 多种文本检测训练算法,EAST、DB
|
||
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
|
||
|
||
## **超轻量级中文OCR体验**
|
||
|
||
![](./doc/imgs_draw/11.jpg)
|
||
|
||
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末。
|
||
|
||
#### 1.运行环境配置
|
||
|
||
前请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
|
||
|
||
#### 2.模型下载
|
||
|
||
```
|
||
# 创建模型保存目录
|
||
mkdir inference && cd inference && mkdir det && mkdir rec
|
||
# 下载inference模型文件包
|
||
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
|
||
# inference模型文件包解压
|
||
tar -xf ./inference/inference.tar
|
||
```
|
||
|
||
#### 3.单张图像或者图像集合预测
|
||
|
||
实现文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。
|
||
|
||
```
|
||
# 设置PYTHONPATH环境变量
|
||
export PYTHONPATH=.
|
||
|
||
# 预测image_dir指定的单张图像
|
||
python tools/infer/predict_system.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||
|
||
# 预测image_dir指定的图像集合
|
||
python tools/infer/predict_system.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||
```
|
||
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于推理引擎预测](./doc/inference.md)。
|
||
|
||
## 文档教程
|
||
- [快速安装](./doc/installation.md)
|
||
- [文本检测模型训练/评估/预测](./doc/detection.md)
|
||
- [文本识别模型训练/评估/预测](./doc/recognition.md)
|
||
- [基于推理引擎预测](./doc/inference.md)
|
||
|
||
## 文本检测算法
|
||
|
||
PaddleOCR开源的文本检测算法列表:
|
||
- [x] [EAST](https://arxiv.org/abs/1704.03155)
|
||
- [x] [DB](https://arxiv.org/abs/1911.08947)
|
||
- [ ] [SAST](https://arxiv.org/abs/1908.05498)(百度自研, comming soon)
|
||
|
||
在ICDAR2015文本检测公开数据集上,算法效果如下:
|
||
|
||
|模型|骨干网络|Hmean|
|
||
|-|-|-|
|
||
|[EAST](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|ResNet50_vd|85.85%|
|
||
|[EAST](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|MobileNetV3|79.08%|
|
||
|[DB](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|ResNet50_vd|83.30%|
|
||
|[DB](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|MobileNetV3|73.00%|
|
||
|
||
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)。
|
||
|
||
## 文本识别算法
|
||
|
||
PaddleOCR开源的文本识别算法列表:
|
||
- [x] [CRNN](https://arxiv.org/abs/1507.05717)
|
||
- [x] [Rosetta](https://arxiv.org/abs/1910.05085)
|
||
- [x] [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
|
||
- [x] [RARE](https://arxiv.org/abs/1603.03915v1)
|
||
- [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
|
||
|
||
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别合成数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行效果评估,算法效果如下:
|
||
|
||
|模型|骨干网络|ACC|
|
||
|-|-|-|
|
||
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|Resnet34_vd|80.24%|
|
||
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|MobileNetV3|78.16%|
|
||
|[CRNN](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|Resnet34_vd|82.20%|
|
||
|[CRNN](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|MobileNetV3|79.37%|
|
||
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|Resnet34_vd|83.93%|
|
||
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|MobileNetV3|81.56%|
|
||
|[RARE](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|Resnet34_vd|84.90%|
|
||
|[RARE](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|MobileNetV3|83.32%|
|
||
|
||
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)。
|
||
|
||
## 端到端OCR算法
|
||
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
|
||
|
||
## 效果展示
|
||
![](./doc/imgs_draw/1.jpg)
|
||
![](./doc/imgs_draw/4.jpg)
|
||
![](./doc/imgs_draw/6.jpg)
|
||
![](./doc/imgs_draw/7.jpg)
|
||
![](./doc/imgs_draw/9.jpg)
|
||
![](./doc/imgs_draw/12.jpg)
|
||
![](./doc/imgs_draw/16.jpg)
|
||
![](./doc/imgs_draw/22.jpg)
|
||
|
||
|
||
## 参考文献
|
||
```
|
||
1. EAST:
|
||
@inproceedings{zhou2017east,
|
||
title={EAST: an efficient and accurate scene text detector},
|
||
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
|
||
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
|
||
pages={5551--5560},
|
||
year={2017}
|
||
}
|
||
|
||
2. DB:
|
||
@article{liao2019real,
|
||
title={Real-time Scene Text Detection with Differentiable Binarization},
|
||
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
||
journal={arXiv preprint arXiv:1911.08947},
|
||
year={2019}
|
||
}
|
||
|
||
3. DTRB:
|
||
@inproceedings{baek2019wrong,
|
||
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
|
||
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
|
||
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||
pages={4715--4723},
|
||
year={2019}
|
||
}
|
||
|
||
4. SAST:
|
||
@inproceedings{wang2019single,
|
||
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
|
||
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
|
||
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
|
||
pages={1277--1285},
|
||
year={2019}
|
||
}
|
||
|
||
5. SRN:
|
||
@article{yu2020towards,
|
||
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
|
||
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
|
||
journal={arXiv preprint arXiv:2003.12294},
|
||
year={2020}
|
||
}
|
||
|
||
6. end2end-psl:
|
||
@inproceedings{sun2019chinese,
|
||
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
|
||
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
|
||
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||
pages={9086--9095},
|
||
year={2019}
|
||
}
|
||
```
|
||
|
||
## 许可证书
|
||
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
|
||
|
||
## 版本更新
|
||
|
||
## 如何贡献代码
|
||
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
|