133 lines
4.3 KiB
Markdown
133 lines
4.3 KiB
Markdown
## 文字角度分类
|
||
|
||
### 数据准备
|
||
|
||
请按如下步骤设置数据集:
|
||
|
||
训练数据的默认存储路径是 `PaddleOCR/train_data/cls`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
|
||
|
||
```
|
||
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
|
||
```
|
||
|
||
请参考下文组织您的数据。
|
||
- 训练集
|
||
|
||
首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(cls_gt_train.txt)记录图片路径和标签。
|
||
|
||
**注意:** 默认请将图片路径和图片标签用 `\t` 分割,如用其他方式分割将造成训练报错
|
||
|
||
0和180分别表示图片的角度为0度和180度
|
||
|
||
```
|
||
" 图像文件名 图像标注信息 "
|
||
|
||
train_data/cls/word_001.jpg 0
|
||
train_data/cls/word_002.jpg 180
|
||
```
|
||
|
||
最终训练集应有如下文件结构:
|
||
```
|
||
|-train_data
|
||
|-cls
|
||
|- cls_gt_train.txt
|
||
|- train
|
||
|- word_001.png
|
||
|- word_002.jpg
|
||
|- word_003.jpg
|
||
| ...
|
||
```
|
||
|
||
- 测试集
|
||
|
||
同训练集类似,测试集也需要提供一个包含所有图片的文件夹(test)和一个cls_gt_test.txt,测试集的结构如下所示:
|
||
|
||
```
|
||
|-train_data
|
||
|-cls
|
||
|- cls_gt_test.txt
|
||
|- test
|
||
|- word_001.jpg
|
||
|- word_002.jpg
|
||
|- word_003.jpg
|
||
| ...
|
||
```
|
||
|
||
### 启动训练
|
||
|
||
PaddleOCR提供了训练脚本、评估脚本和预测脚本。
|
||
|
||
开始训练:
|
||
|
||
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
|
||
|
||
```
|
||
# GPU训练 支持单卡,多卡训练,通过selected_gpus指定卡号
|
||
# 启动训练,下面的命令已经写入train.sh文件中,只需修改文件里的配置文件路径即可
|
||
python3 -m paddle.distributed.launch --selected_gpus '0,1,2,3,4,5,6,7' tools/train.py -c configs/cls/cls_mv3.yml
|
||
```
|
||
|
||
- 数据增强
|
||
|
||
PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入扰动,请在配置文件中取消`Train.dataset.transforms`下的`RecAug`和`RandAugment`字段的注释。
|
||
|
||
默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse),随机数据增强(RandAugment)。
|
||
|
||
训练过程中除随机数据增强外每种扰动方式以50%的概率被选择,具体代码实现请参考:
|
||
[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)
|
||
[randaugment.py](../../ppocr/data/imaug/randaugment.py)
|
||
|
||
*由于OpenCV的兼容性问题,扰动操作暂时只支持linux*
|
||
|
||
### 训练
|
||
|
||
PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml` 中修改 `eval_batch_step` 设置评估频率,默认每1000个iter评估一次。训练过程中将会保存如下内容:
|
||
```bash
|
||
├── best_accuracy.pdopt # 最佳模型的优化器参数
|
||
├── best_accuracy.pdparams # 最佳模型的参数
|
||
├── best_accuracy.states # 最佳模型的指标和epoch等信息
|
||
├── config.yml # 本次实验的配置文件
|
||
├── latest.pdopt # 最新模型的优化器参数
|
||
├── latest.pdparams # 最新模型的参数
|
||
├── latest.states # 最新模型的指标和epoch等信息
|
||
└── train.log # 训练日志
|
||
```
|
||
|
||
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
|
||
|
||
**注意,预测/评估时的配置文件请务必与训练一致。**
|
||
|
||
### 评估
|
||
|
||
评估数据集可以通过修改`configs/cls/cls_mv3.yml`文件里的`Eval.dataset.label_file_list` 字段设置。
|
||
|
||
```
|
||
export CUDA_VISIBLE_DEVICES=0
|
||
# GPU 评估, Global.checkpoints 为待测权重
|
||
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||
```
|
||
|
||
### 预测
|
||
|
||
* 训练引擎的预测
|
||
|
||
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
|
||
|
||
通过 `Global.infer_img` 指定预测图片或文件夹路径,通过 `Global.checkpoints` 指定权重:
|
||
|
||
```
|
||
# 预测分类结果
|
||
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
|
||
```
|
||
|
||
预测图片:
|
||
|
||
![](../imgs_words/ch/word_1.jpg)
|
||
|
||
得到输入图像的预测结果:
|
||
|
||
```
|
||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||
result: ('0', 0.9998784)
|
||
```
|