8.8 KiB
PaddleOCR 模型部署
PaddleOCR是集训练、预测、部署于一体的实用OCR工具库。本教程将介绍在安卓移动端部署PaddleOCR超轻量中文检测、识别模型的主要流程。
1. 准备环境
运行准备
- 电脑(编译Paddle-Lite)
- 安卓手机(armv7或armv8)
1.1 准备交叉编译环境
交叉编译环境用于编译Paddle-Lite和PaddleOCR的C++ demo。 支持多种开发环境,不同开发环境的编译流程请参考对应文档。
1.2 准备预测库
预测库有两种获取方式:
-
- 直接下载,下载链接.
注意选择
with_extra=ON,with_cv=ON
的下载链接。
- 直接下载,下载链接.
注意选择
-
- 编译Paddle-Lite得到,Paddle-Lite的编译方式如下:
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout 2.6.1
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
注意:编译Paddle-Lite获得预测库时,需要打开--with_cv=ON --with_extra=ON
两个选项,--arch
表示arm
版本,这里指定为armv8,
更多编译命令
介绍请参考链接。
直接下载预测库并解压后,可以得到inference_lite_lib.android.armv8/
文件夹,通过编译Paddle-Lite得到的预测库位于
Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/
文件夹下。
预测库的文件目录如下:
inference_lite_lib.android.armv8/
|-- cxx C++ 预测库和头文件
| |-- include C++ 头文件
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib C++预测库
| |-- libpaddle_api_light_bundled.a C++静态库
| `-- libpaddle_light_api_shared.so C++动态库
|-- java Java预测库
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++和Java示例代码
| |-- cxx C++ 预测库demo
| `-- java Java 预测库demo
2 开始运行
2.1 模型优化
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle-lite的opt工具可以自动 对inference模型进行优化,优化后的模型更轻量,模型运行速度更快。
下述表格中提供了优化好的超轻量中文模型:
模型简介 | 检测模型 | 识别模型 | Paddle-Lite版本 |
---|---|---|---|
超轻量级中文OCR opt优化模型 | 下载地址 | 下载地址 | 2.6.1 |
如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 2.2节。
如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。
模型优化需要Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下:
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout 2.6.1
# 启动编译
./lite/tools/build.sh build_optimize_tool
编译完成后,opt文件位于build.opt/lite/api/
下,可通过如下方式查看opt的运行选项和使用方式;
cd build.opt/lite/api/
./opt
选项 | 说明 |
---|---|
--model_dir | 待优化的PaddlePaddle模型(非combined形式)的路径 |
--model_file | 待优化的PaddlePaddle模型(combined形式)的网络结构文件路径 |
--param_file | 待优化的PaddlePaddle模型(combined形式)的权重文件路径 |
--optimize_out_type | 输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf |
--optimize_out | 优化模型的输出路径 |
--valid_targets | 指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm |
--record_tailoring_info | 当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false |
--model_dir
适用于待优化的模型是非combined方式,PaddleOCR的inference模型是combined方式,即模型结构和模型参数使用单独一个文件存储。
下面以PaddleOCR的超轻量中文模型为例,介绍使用编译好的opt文件完成inference模型到Paddle-Lite优化模型的转换。
# 下载PaddleOCR的超轻量文inference模型,并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
# 转换检测模型
./opt --model_file=./ch_det_mv3_db/model --param_file=./ch_det_mv3_db/params --optimize_out_type=naive_buffer --optimize_out=./ch_det_mv3_db_opt --valid_targets=arm
# 转换识别模型
./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm
转换成功后,当前目录下会多出ch_det_mv3_db_opt.nb
, ch_rec_mv3_crnn_opt.nb
结尾的文件,即是转换成功的模型文件。
注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt 转换的输入模型是paddle保存的inference模型
2.2 与手机联调
首先需要进行一些准备工作。
- 准备一台arm8的安卓手机,如果编译的预测库和opt文件是armv7,则需要arm7的手机。
- 打开手机的USB调试选项,选择文件传输模式,连接电脑。
- 电脑上安装adb工具,用于调试。在电脑终端中输入
adb devices
,如果有类似以下输出,则表示安装成功。
List of devices attached
744be294 device
- 准备预测库、模型和预测文件,在预测库
inference_lite_lib.android.armv8/demo/cxx/
下新建一个ocr/
文件夹,并将转换后的nb模型、 PaddleOCR repo中PaddleOCR/deploy/lite/
下的所有文件放在新建的ocr文件夹下。执行完成后,ocr文件夹下将有如下文件格式:
demo/cxx/ocr/
|-- debug/ 新建debug文件夹存放模型文件
| |--ch_det_mv3_db_opt.nb 优化后的检测模型文件
| |--ch_rec_mv3_crnn_opt.nb 优化后的识别模型文件
|-- utils/
| |-- clipper.cpp Clipper库的cpp文件
| |-- clipper.hpp Clipper库的hpp文件
| |-- crnn_process.cpp 识别模型CRNN的预处理和后处理cpp文件
| |-- db_post_process.cpp 检测模型DB的后处理cpp文件
|-- Makefile 编译文件
|-- ocr_db_crnn.cc C++预测文件
- 编译C++预测文件,准备测试图像,准备字典文件
cd demo/cxx/ocr/
# 执行编译
make
# 将编译的可执行文件移动到debug文件夹中
mv ocr_db_crnn ./debug/
# 将C++预测动态库so文件复制到debug文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
准备测试图像,以PaddleOCR/doc/imgs/12.jpg
为例,将测试的图像复制到demo/cxx/ocr/debug/
文件夹下。
准备字典文件,将PaddleOCR/ppocr/utils/ppocr_keys_v1.txt
复制到demo/cxx/ocr/debug/
文件夹下。
上述步骤完成后就可以使用adb将文件push到手机上运行,步骤如下:
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
./ocr_db_crnn ch_det_mv3_db_opt.nb ch_rec_mv3_crnn_opt.nb ./12.jpg
如果对代码做了修改,则需要重新编译并push到手机上。