PaddleOCR/ppocr/data/simple_dataset.py

119 lines
4.6 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import random
from paddle.io import Dataset
from .imaug import transform, create_operators
class SimpleDataSet(Dataset):
def __init__(self, config, mode, logger):
super(SimpleDataSet, self).__init__()
global_config = config['Global']
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
batch_size = loader_config['batch_size_per_card']
self.delimiter = dataset_config.get('delimiter', '\t')
label_file_list = dataset_config.pop('label_file_list')
data_source_num = len(label_file_list)
if data_source_num == 1:
ratio_list = [1.0]
else:
ratio_list = dataset_config.pop('ratio_list')
assert sum(ratio_list) == 1, "The sum of the ratio_list should be 1."
assert len(
ratio_list
) == data_source_num, "The length of ratio_list should be the same as the file_list."
self.data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle']
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines_list, data_num_list = self.get_image_info_list(
label_file_list)
self.data_idx_order_list = self.dataset_traversal(
data_num_list, ratio_list, batch_size)
self.shuffle_data_random()
self.ops = create_operators(dataset_config['transforms'], global_config)
def get_image_info_list(self, file_list):
if isinstance(file_list, str):
file_list = [file_list]
data_lines_list = []
data_num_list = []
for file in file_list:
with open(file, "rb") as f:
lines = f.readlines()
data_lines_list.append(lines)
data_num_list.append(len(lines))
return data_lines_list, data_num_list
def dataset_traversal(self, data_num_list, ratio_list, batch_size):
select_num_list = []
dataset_num = len(data_num_list)
for dno in range(dataset_num):
select_num = round(batch_size * ratio_list[dno])
select_num = max(select_num, 1)
select_num_list.append(select_num)
data_idx_order_list = []
cur_index_sets = [0] * dataset_num
while True:
finish_read_num = 0
for dataset_idx in range(dataset_num):
cur_index = cur_index_sets[dataset_idx]
if cur_index >= data_num_list[dataset_idx]:
finish_read_num += 1
else:
select_num = select_num_list[dataset_idx]
for sno in range(select_num):
cur_index = cur_index_sets[dataset_idx]
if cur_index >= data_num_list[dataset_idx]:
break
data_idx_order_list.append((dataset_idx, cur_index))
cur_index_sets[dataset_idx] += 1
if finish_read_num == dataset_num:
break
return data_idx_order_list
def shuffle_data_random(self):
if self.do_shuffle:
for dno in range(len(self.data_lines_list)):
random.shuffle(self.data_lines_list[dno])
return
def __getitem__(self, idx):
dataset_idx, file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines_list[dataset_idx][file_idx]
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return len(self.data_idx_order_list)