PaddleOCR/deploy/slim/quantization/export_model.py

139 lines
4.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
)
import program
import paddle
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.save_load import init_model, load_params
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import create_module
from ppocr.data.reader_main import reader_main
from paddleslim.quant import quant_aware, convert
from paddle.fluid.layer_helper import LayerHelper
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
from eval_utils.eval_cls_utils import eval_cls_run
def main():
# 1. quantization configs
quant_config = {
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# ops of name_scope in not_quant_pattern list, will not be quantized
'not_quant_pattern': ['skip_quant'],
# ops of type in quantize_op_types, will be quantized
'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. defaulf is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
}
# Run code with static graph mode.
try:
paddle.enable_static()
except:
pass
startup_prog, eval_program, place, config, alg_type = program.preprocess()
feeded_var_names, target_vars, fetches_var_name = program.build_export(
config, eval_program, startup_prog)
eval_program = eval_program.clone(for_test=True)
exe = fluid.Executor(place)
exe.run(startup_prog)
eval_program = quant_aware(
eval_program, place, quant_config, scope=None, for_test=True)
init_model(config, eval_program, exe)
# 2. Convert the program before save inference program
# The dtype of eval_program's weights is float32, but in int8 range.
eval_program = convert(eval_program, place, quant_config, scope=None)
eval_fetch_name_list = fetches_var_name
eval_fetch_varname_list = [v.name for v in target_vars]
eval_reader = reader_main(config=config, mode="eval")
quant_info_dict = {'program':eval_program,\
'reader':eval_reader,\
'fetch_name_list':eval_fetch_name_list,\
'fetch_varname_list':eval_fetch_varname_list}
if alg_type == 'det':
final_metrics = eval_det_run(exe, config, quant_info_dict, "eval")
elif alg_type == 'cls':
final_metrics = eval_cls_run(exe, quant_info_dict)
else:
final_metrics = eval_rec_run(exe, config, quant_info_dict, "eval")
print(final_metrics)
# 3. Save inference model
model_path = "./quant_model"
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_inference_model(
dirname=model_path,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
executor=exe,
main_program=eval_program,
model_filename=model_path + '/model',
params_filename=model_path + '/params')
print("model saved as {}".format(model_path))
if __name__ == '__main__':
main()