PaddleOCR/ppocr/modeling/common_functions.py

96 lines
3.1 KiB
Python
Executable File

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import math
def get_para_bias_attr(l2_decay, k, name):
regularizer = fluid.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = fluid.initializer.Uniform(-stdv, stdv)
para_attr = fluid.ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
bias_attr = fluid.ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
return [para_attr, bias_attr]
def conv_bn_layer(input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d')
bn_name = "bn_" + name
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def deconv_bn_layer(input,
num_filters,
filter_size=4,
stride=2,
act='relu',
name=None):
deconv = fluid.layers.conv2d_transpose(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=1,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.deconv2d')
bn_name = "bn_" + name
return fluid.layers.batch_norm(
input=deconv,
act=act,
name=bn_name + '.output',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def create_tmp_var(program, name, dtype, shape, lod_level=0):
return program.current_block().create_var(
name=name, dtype=dtype, shape=shape, lod_level=lod_level)