96 lines
3.1 KiB
Python
Executable File
96 lines
3.1 KiB
Python
Executable File
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.param_attr import ParamAttr
|
|
import math
|
|
|
|
|
|
def get_para_bias_attr(l2_decay, k, name):
|
|
regularizer = fluid.regularizer.L2Decay(l2_decay)
|
|
stdv = 1.0 / math.sqrt(k * 1.0)
|
|
initializer = fluid.initializer.Uniform(-stdv, stdv)
|
|
para_attr = fluid.ParamAttr(
|
|
regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
|
|
bias_attr = fluid.ParamAttr(
|
|
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
|
|
return [para_attr, bias_attr]
|
|
|
|
|
|
def conv_bn_layer(input,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None,
|
|
name=None):
|
|
conv = fluid.layers.conv2d(
|
|
input=input,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=groups,
|
|
act=None,
|
|
param_attr=ParamAttr(name=name + "_weights"),
|
|
bias_attr=False,
|
|
name=name + '.conv2d')
|
|
|
|
bn_name = "bn_" + name
|
|
return fluid.layers.batch_norm(
|
|
input=conv,
|
|
act=act,
|
|
name=bn_name + '.output',
|
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
|
moving_mean_name=bn_name + '_mean',
|
|
moving_variance_name=bn_name + '_variance')
|
|
|
|
|
|
def deconv_bn_layer(input,
|
|
num_filters,
|
|
filter_size=4,
|
|
stride=2,
|
|
act='relu',
|
|
name=None):
|
|
deconv = fluid.layers.conv2d_transpose(
|
|
input=input,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=1,
|
|
act=None,
|
|
param_attr=ParamAttr(name=name + "_weights"),
|
|
bias_attr=False,
|
|
name=name + '.deconv2d')
|
|
bn_name = "bn_" + name
|
|
return fluid.layers.batch_norm(
|
|
input=deconv,
|
|
act=act,
|
|
name=bn_name + '.output',
|
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
|
moving_mean_name=bn_name + '_mean',
|
|
moving_variance_name=bn_name + '_variance')
|
|
|
|
|
|
def create_tmp_var(program, name, dtype, shape, lod_level=0):
|
|
return program.current_block().create_var(
|
|
name=name, dtype=dtype, shape=shape, lod_level=lod_level)
|