PaddleOCR/tools/infer/utility.py

348 lines
12 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
import json
from PIL import Image, ImageDraw, ImageFont
import math
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
#params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
#params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str)
parser.add_argument("--det_max_side_len", type=float, default=960)
#DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
#EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
#params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=30)
parser.add_argument(
"--rec_char_dict_path",
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
parser.add_argument("--use_space_char", type=bool, default=True)
parser.add_argument("--enable_mkldnn", type=bool, default=False)
return parser.parse_args()
def create_predictor(args, mode):
if mode == "det":
model_dir = args.det_model_dir
else:
model_dir = args.rec_model_dir
if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0)
model_file_path = model_dir + "/model"
params_file_path = model_dir + "/params"
if not os.path.exists(model_file_path):
logger.info("not find model file path {}".format(model_file_path))
sys.exit(0)
if not os.path.exists(params_file_path):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(6)
if args.enable_mkldnn:
config.enable_mkldnn()
#config.enable_memory_optim()
config.disable_glog_info()
# use zero copy
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
def draw_text_det_res(dt_boxes, img_path):
src_im = cv2.imread(img_path)
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape(-1, 2)
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
return src_im
def resize_img(img, input_size=600):
"""
resize img and limit the longest side of the image to input_size
"""
img = np.array(img)
im_shape = img.shape
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
draw_txt(bool): whether draw text or not
drop_score(float): only scores greater than drop_threshold will be visualized
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score or math.isnan(score):
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if draw_txt:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def draw_ocr_box_txt(image, boxes, txts):
h, w = image.height, image.width
img_left = image.copy()
img_right = Image.new('RGB', (w, h), (255, 255, 255))
import random
# 每次使用相同的随机种子 ,可以保证两次颜色一致
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
draw_right = ImageDraw.Draw(img_right)
for (box, txt) in zip(boxes, txts):
color = (random.randint(0, 255), random.randint(0, 255),
random.randint(0, 255))
draw_left.polygon(box, fill=color)
draw_right.polygon(
[
box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
box[2][1], box[3][0], box[3][1]
],
outline=color)
box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
1])**2)
box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
1])**2)
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
font = ImageFont.truetype(
"./doc/simfang.ttf", font_size, encoding="utf-8")
cur_y = box[0][1]
for c in txt:
char_size = font.getsize(c)
draw_right.text(
(box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
cur_y += char_size[1]
else:
font_size = max(int(box_height * 0.8), 10)
font = ImageFont.truetype(
"./doc/simfang.ttf", font_size, encoding="utf-8")
draw_right.text(
[box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(img_right, (w, 0, w * 2, h))
return np.array(img_show)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def base64_to_cv2(b64str):
import base64
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score:
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
return image
if __name__ == '__main__':
test_img = "./doc/test_v2"
predict_txt = "./doc/predict.txt"
f = open(predict_txt, 'r')
data = f.readlines()
img_path, anno = data[0].strip().split('\t')
img_name = os.path.basename(img_path)
img_path = os.path.join(test_img, img_name)
image = Image.open(img_path)
data = json.loads(anno)
boxes, txts, scores = [], [], []
for dic in data:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
cv2.imwrite(img_name, new_img)