410 lines
14 KiB
Python
410 lines
14 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
import paddle
|
|
from paddle import ParamAttr, nn
|
|
from paddle import nn, ParamAttr
|
|
from paddle.nn import functional as F
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
gradient_clip = 10
|
|
|
|
|
|
class WrapEncoderForFeature(nn.Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
bos_idx=0):
|
|
super(WrapEncoderForFeature, self).__init__()
|
|
|
|
self.prepare_encoder = PrepareEncoder(
|
|
src_vocab_size,
|
|
d_model,
|
|
max_length,
|
|
prepostprocess_dropout,
|
|
bos_idx=bos_idx,
|
|
word_emb_param_name="src_word_emb_table")
|
|
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
|
|
d_inner_hid, prepostprocess_dropout,
|
|
attention_dropout, relu_dropout, preprocess_cmd,
|
|
postprocess_cmd)
|
|
|
|
def forward(self, enc_inputs):
|
|
conv_features, src_pos, src_slf_attn_bias = enc_inputs
|
|
enc_input = self.prepare_encoder(conv_features, src_pos)
|
|
enc_output = self.encoder(enc_input, src_slf_attn_bias)
|
|
return enc_output
|
|
|
|
|
|
class WrapEncoder(nn.Layer):
|
|
"""
|
|
embedder + encoder
|
|
"""
|
|
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
bos_idx=0):
|
|
super(WrapEncoder, self).__init__()
|
|
|
|
self.prepare_decoder = PrepareDecoder(
|
|
src_vocab_size,
|
|
d_model,
|
|
max_length,
|
|
prepostprocess_dropout,
|
|
bos_idx=bos_idx)
|
|
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
|
|
d_inner_hid, prepostprocess_dropout,
|
|
attention_dropout, relu_dropout, preprocess_cmd,
|
|
postprocess_cmd)
|
|
|
|
def forward(self, enc_inputs):
|
|
src_word, src_pos, src_slf_attn_bias = enc_inputs
|
|
enc_input = self.prepare_decoder(src_word, src_pos)
|
|
enc_output = self.encoder(enc_input, src_slf_attn_bias)
|
|
return enc_output
|
|
|
|
|
|
class Encoder(nn.Layer):
|
|
"""
|
|
encoder
|
|
"""
|
|
|
|
def __init__(self,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da"):
|
|
|
|
super(Encoder, self).__init__()
|
|
|
|
self.encoder_layers = list()
|
|
for i in range(n_layer):
|
|
self.encoder_layers.append(
|
|
self.add_sublayer(
|
|
"layer_%d" % i,
|
|
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
|
|
prepostprocess_dropout, attention_dropout,
|
|
relu_dropout, preprocess_cmd,
|
|
postprocess_cmd)))
|
|
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
|
|
prepostprocess_dropout)
|
|
|
|
def forward(self, enc_input, attn_bias):
|
|
for encoder_layer in self.encoder_layers:
|
|
enc_output = encoder_layer(enc_input, attn_bias)
|
|
enc_input = enc_output
|
|
enc_output = self.processer(enc_output)
|
|
return enc_output
|
|
|
|
|
|
class EncoderLayer(nn.Layer):
|
|
"""
|
|
EncoderLayer
|
|
"""
|
|
|
|
def __init__(self,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da"):
|
|
|
|
super(EncoderLayer, self).__init__()
|
|
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
|
|
prepostprocess_dropout)
|
|
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
|
|
attention_dropout)
|
|
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
|
|
prepostprocess_dropout)
|
|
|
|
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
|
|
prepostprocess_dropout)
|
|
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
|
|
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
|
|
prepostprocess_dropout)
|
|
|
|
def forward(self, enc_input, attn_bias):
|
|
attn_output = self.self_attn(
|
|
self.preprocesser1(enc_input), None, None, attn_bias)
|
|
attn_output = self.postprocesser1(attn_output, enc_input)
|
|
ffn_output = self.ffn(self.preprocesser2(attn_output))
|
|
ffn_output = self.postprocesser2(ffn_output, attn_output)
|
|
return ffn_output
|
|
|
|
|
|
class MultiHeadAttention(nn.Layer):
|
|
"""
|
|
Multi-Head Attention
|
|
"""
|
|
|
|
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
|
|
super(MultiHeadAttention, self).__init__()
|
|
self.n_head = n_head
|
|
self.d_key = d_key
|
|
self.d_value = d_value
|
|
self.d_model = d_model
|
|
self.dropout_rate = dropout_rate
|
|
self.q_fc = paddle.nn.Linear(
|
|
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
|
|
self.k_fc = paddle.nn.Linear(
|
|
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
|
|
self.v_fc = paddle.nn.Linear(
|
|
in_features=d_model, out_features=d_value * n_head, bias_attr=False)
|
|
self.proj_fc = paddle.nn.Linear(
|
|
in_features=d_value * n_head, out_features=d_model, bias_attr=False)
|
|
|
|
def _prepare_qkv(self, queries, keys, values, cache=None):
|
|
if keys is None: # self-attention
|
|
keys, values = queries, queries
|
|
static_kv = False
|
|
else: # cross-attention
|
|
static_kv = True
|
|
|
|
q = self.q_fc(queries)
|
|
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
|
|
q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
|
|
|
|
if cache is not None and static_kv and "static_k" in cache:
|
|
# for encoder-decoder attention in inference and has cached
|
|
k = cache["static_k"]
|
|
v = cache["static_v"]
|
|
else:
|
|
k = self.k_fc(keys)
|
|
v = self.v_fc(values)
|
|
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
|
|
k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
|
|
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
|
|
v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
|
|
|
|
if cache is not None:
|
|
if static_kv and not "static_k" in cache:
|
|
# for encoder-decoder attention in inference and has not cached
|
|
cache["static_k"], cache["static_v"] = k, v
|
|
elif not static_kv:
|
|
# for decoder self-attention in inference
|
|
cache_k, cache_v = cache["k"], cache["v"]
|
|
k = paddle.concat([cache_k, k], axis=2)
|
|
v = paddle.concat([cache_v, v], axis=2)
|
|
cache["k"], cache["v"] = k, v
|
|
|
|
return q, k, v
|
|
|
|
def forward(self, queries, keys, values, attn_bias, cache=None):
|
|
# compute q ,k ,v
|
|
keys = queries if keys is None else keys
|
|
values = keys if values is None else values
|
|
q, k, v = self._prepare_qkv(queries, keys, values, cache)
|
|
|
|
# scale dot product attention
|
|
product = paddle.matmul(x=q, y=k, transpose_y=True)
|
|
product = product * self.d_model**-0.5
|
|
if attn_bias is not None:
|
|
product += attn_bias
|
|
weights = F.softmax(product)
|
|
if self.dropout_rate:
|
|
weights = F.dropout(
|
|
weights, p=self.dropout_rate, mode="downscale_in_infer")
|
|
out = paddle.matmul(weights, v)
|
|
|
|
# combine heads
|
|
out = paddle.transpose(out, perm=[0, 2, 1, 3])
|
|
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
|
|
|
|
# project to output
|
|
out = self.proj_fc(out)
|
|
|
|
return out
|
|
|
|
|
|
class PrePostProcessLayer(nn.Layer):
|
|
"""
|
|
PrePostProcessLayer
|
|
"""
|
|
|
|
def __init__(self, process_cmd, d_model, dropout_rate):
|
|
super(PrePostProcessLayer, self).__init__()
|
|
self.process_cmd = process_cmd
|
|
self.functors = []
|
|
for cmd in self.process_cmd:
|
|
if cmd == "a": # add residual connection
|
|
self.functors.append(lambda x, y: x + y if y is not None else x)
|
|
elif cmd == "n": # add layer normalization
|
|
self.functors.append(
|
|
self.add_sublayer(
|
|
"layer_norm_%d" % len(
|
|
self.sublayers(include_sublayers=False)),
|
|
paddle.nn.LayerNorm(
|
|
normalized_shape=d_model,
|
|
weight_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(1.)),
|
|
bias_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(0.)))))
|
|
elif cmd == "d": # add dropout
|
|
self.functors.append(lambda x: F.dropout(
|
|
x, p=dropout_rate, mode="downscale_in_infer")
|
|
if dropout_rate else x)
|
|
|
|
def forward(self, x, residual=None):
|
|
for i, cmd in enumerate(self.process_cmd):
|
|
if cmd == "a":
|
|
x = self.functors[i](x, residual)
|
|
else:
|
|
x = self.functors[i](x)
|
|
return x
|
|
|
|
|
|
class PrepareEncoder(nn.Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
src_emb_dim,
|
|
src_max_len,
|
|
dropout_rate=0,
|
|
bos_idx=0,
|
|
word_emb_param_name=None,
|
|
pos_enc_param_name=None):
|
|
super(PrepareEncoder, self).__init__()
|
|
self.src_emb_dim = src_emb_dim
|
|
self.src_max_len = src_max_len
|
|
self.emb = paddle.nn.Embedding(
|
|
num_embeddings=self.src_max_len,
|
|
embedding_dim=self.src_emb_dim,
|
|
sparse=True)
|
|
self.dropout_rate = dropout_rate
|
|
|
|
def forward(self, src_word, src_pos):
|
|
src_word_emb = src_word
|
|
src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
|
|
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
|
|
src_pos = paddle.squeeze(src_pos, axis=-1)
|
|
src_pos_enc = self.emb(src_pos)
|
|
src_pos_enc.stop_gradient = True
|
|
enc_input = src_word_emb + src_pos_enc
|
|
if self.dropout_rate:
|
|
out = F.dropout(
|
|
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
|
|
else:
|
|
out = enc_input
|
|
return out
|
|
|
|
|
|
class PrepareDecoder(nn.Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
src_emb_dim,
|
|
src_max_len,
|
|
dropout_rate=0,
|
|
bos_idx=0,
|
|
word_emb_param_name=None,
|
|
pos_enc_param_name=None):
|
|
super(PrepareDecoder, self).__init__()
|
|
self.src_emb_dim = src_emb_dim
|
|
"""
|
|
self.emb0 = Embedding(num_embeddings=src_vocab_size,
|
|
embedding_dim=src_emb_dim)
|
|
"""
|
|
self.emb0 = paddle.nn.Embedding(
|
|
num_embeddings=src_vocab_size,
|
|
embedding_dim=self.src_emb_dim,
|
|
padding_idx=bos_idx,
|
|
weight_attr=paddle.ParamAttr(
|
|
name=word_emb_param_name,
|
|
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
|
|
self.emb1 = paddle.nn.Embedding(
|
|
num_embeddings=src_max_len,
|
|
embedding_dim=self.src_emb_dim,
|
|
weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
|
|
self.dropout_rate = dropout_rate
|
|
|
|
def forward(self, src_word, src_pos):
|
|
src_word = fluid.layers.cast(src_word, 'int64')
|
|
src_word = paddle.squeeze(src_word, axis=-1)
|
|
src_word_emb = self.emb0(src_word)
|
|
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
|
|
src_pos = paddle.squeeze(src_pos, axis=-1)
|
|
src_pos_enc = self.emb1(src_pos)
|
|
src_pos_enc.stop_gradient = True
|
|
enc_input = src_word_emb + src_pos_enc
|
|
if self.dropout_rate:
|
|
out = F.dropout(
|
|
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
|
|
else:
|
|
out = enc_input
|
|
return out
|
|
|
|
|
|
class FFN(nn.Layer):
|
|
"""
|
|
Feed-Forward Network
|
|
"""
|
|
|
|
def __init__(self, d_inner_hid, d_model, dropout_rate):
|
|
super(FFN, self).__init__()
|
|
self.dropout_rate = dropout_rate
|
|
self.fc1 = paddle.nn.Linear(
|
|
in_features=d_model, out_features=d_inner_hid)
|
|
self.fc2 = paddle.nn.Linear(
|
|
in_features=d_inner_hid, out_features=d_model)
|
|
|
|
def forward(self, x):
|
|
hidden = self.fc1(x)
|
|
hidden = F.relu(hidden)
|
|
if self.dropout_rate:
|
|
hidden = F.dropout(
|
|
hidden, p=self.dropout_rate, mode="downscale_in_infer")
|
|
out = self.fc2(hidden)
|
|
return out
|