PaddleOCR/ppocr/modeling/heads/det_east_head.py

118 lines
3.7 KiB
Python
Executable File

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict
class EASTHead(object):
"""
EAST: An Efficient and Accurate Scene Text Detector
see arxiv: https://arxiv.org/abs/1704.03155
args:
params(dict): the super parameters for network build
"""
def __init__(self, params):
self.model_name = params['model_name']
def unet_fusion(self, inputs):
f = inputs[::-1]
if self.model_name == "large":
num_outputs = [128, 128, 128, 128]
else:
num_outputs = [64, 64, 64, 64]
g = [None, None, None, None]
h = [None, None, None, None]
for i in range(4):
if i == 0:
h[i] = f[i]
else:
h[i] = fluid.layers.concat([g[i - 1], f[i]], axis=1)
h[i] = conv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
filter_size=3,
stride=1,
act='relu',
name="unet_h_%d" % (i))
if i <= 2:
#can be replaced with unpool
g[i] = deconv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
name="unet_g_%d" % (i))
else:
g[i] = conv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
filter_size=3,
stride=1,
act='relu',
name="unet_g_%d" % (i))
return g[3]
def detector_header(self, f_common):
if self.model_name == "large":
num_outputs = [128, 64, 1, 8]
else:
num_outputs = [64, 32, 1, 8]
f_det = conv_bn_layer(
input=f_common,
num_filters=num_outputs[0],
filter_size=3,
stride=1,
act='relu',
name="det_head1")
f_det = conv_bn_layer(
input=f_det,
num_filters=num_outputs[1],
filter_size=3,
stride=1,
act='relu',
name="det_head2")
#f_score
f_score = conv_bn_layer(
input=f_det,
num_filters=num_outputs[2],
filter_size=1,
stride=1,
act=None,
name="f_score")
f_score = fluid.layers.sigmoid(f_score)
#f_geo
f_geo = conv_bn_layer(
input=f_det,
num_filters=num_outputs[3],
filter_size=1,
stride=1,
act=None,
name="f_geo")
f_geo = (fluid.layers.sigmoid(f_geo) - 0.5) * 2 * 800
return f_score, f_geo
def __call__(self, inputs):
f_common = self.unet_fusion(inputs)
f_score, f_geo = self.detector_header(f_common)
predicts = OrderedDict()
predicts['f_score'] = f_score
predicts['f_geo'] = f_geo
return predicts