PaddleOCR/tools/train.py

135 lines
4.4 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
)
import tools.program as program
from paddle import fluid
from ppocr.utils.utility import initial_logger
from ppocr.utils.utility import enable_static_mode
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from paddle.fluid.contrib.model_stat import summary
def main():
# build train program
train_build_outputs = program.build(
config, train_program, startup_program, mode='train')
train_loader = train_build_outputs[0]
train_fetch_name_list = train_build_outputs[1]
train_fetch_varname_list = train_build_outputs[2]
train_opt_loss_name = train_build_outputs[3]
model_average = train_build_outputs[-1]
# build eval program
eval_program = fluid.Program()
eval_build_outputs = program.build(
config, eval_program, startup_program, mode='eval')
eval_fetch_name_list = eval_build_outputs[1]
eval_fetch_varname_list = eval_build_outputs[2]
eval_program = eval_program.clone(for_test=True)
# initialize train reader
train_reader = reader_main(config=config, mode="train")
train_loader.set_sample_list_generator(train_reader, places=place)
# initialize eval reader
eval_reader = reader_main(config=config, mode="eval")
exe = fluid.Executor(place)
exe.run(startup_program)
# compile program for multi-devices
train_compile_program = program.create_multi_devices_program(
train_program, train_opt_loss_name)
# dump mode structure
if config['Global']['debug']:
if train_alg_type == 'rec' and 'attention' in config['Global'][
'loss_type']:
logger.warning('Does not suport dump attention...')
else:
summary(train_program)
init_model(config, train_program, exe)
train_info_dict = {'compile_program':train_compile_program,\
'train_program':train_program,\
'reader':train_loader,\
'fetch_name_list':train_fetch_name_list,\
'fetch_varname_list':train_fetch_varname_list,\
'model_average': model_average}
eval_info_dict = {'program':eval_program,\
'reader':eval_reader,\
'fetch_name_list':eval_fetch_name_list,\
'fetch_varname_list':eval_fetch_varname_list}
if train_alg_type == 'det':
program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
elif train_alg_type == 'rec':
program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)
else:
program.train_eval_cls_run(config, exe, train_info_dict, eval_info_dict)
def test_reader():
logger.info(config)
train_reader = reader_main(config=config, mode="train")
import time
starttime = time.time()
count = 0
try:
for data in train_reader():
count += 1
if count % 1 == 0:
batch_time = time.time() - starttime
starttime = time.time()
logger.info("reader:", count, len(data), batch_time)
except Exception as e:
logger.info(e)
logger.info("finish reader: {}, Success!".format(count))
if __name__ == '__main__':
enable_static_mode()
startup_program, train_program, place, config, train_alg_type = program.preprocess(
)
main()
# test_reader()