PaddleOCR/ppocr/postprocess/db_postprocess_torch.py

134 lines
4.6 KiB
Python

import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
class DBPostProcess():
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=1.5):
self.min_size = 3
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
def __call__(self, pred, shape_list, is_output_polygon=False):
'''
batch: (image, polygons, ignore_tags
h_w_list: 包含[h,w]的数组
pred:
binary: text region segmentation map, with shape (N, 1,H, W)
'''
pred = pred.numpy()[:, 0, :, :]
segmentation = self.binarize(pred)
batch_out = []
for batch_index in range(pred.shape[0]):
height, width = shape_list[batch_index]
boxes, scores = self.post_p(
pred[batch_index],
segmentation[batch_index],
width,
height,
is_output_polygon=is_output_polygon)
batch_out.append({"points": boxes})
return batch_out
def binarize(self, pred):
return pred > self.thresh
def post_p(self,
pred,
bitmap,
dest_width,
dest_height,
is_output_polygon=True):
'''
_bitmap: single map with shape (H, W),
whose values are binarized as {0, 1}
'''
height, width = pred.shape
boxes = []
new_scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.005 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, unclip_ratio=self.unclip_ratio)
if len(box) > 1 or len(box) == 0:
continue
else:
continue
four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
if not is_output_polygon:
box = np.array(four_point_box)
else:
box = box.reshape(-1, 2)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box)
new_scores.append(score)
return boxes, new_scores
def unclip(self, box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]