16 KiB
16 KiB
配置文件内容与生成
1. 可选参数列表
以下列表可以通过--help
查看
FLAG | 支持脚本 | 用途 | 默认值 | 备注 |
---|---|---|---|---|
-c | ALL | 指定配置文件 | None | 配置模块说明请参考 参数介绍 |
-o | ALL | 设置配置文件里的参数内容 | None | 使用-o配置相较于-c选择的配置文件具有更高的优先级。例如:-o Global.use_gpu=false |
2. 配置文件参数介绍
以 rec_chinese_lite_train_v2.0.yml
为例
Global
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
use_gpu | 设置代码是否在gpu运行 | true | \ |
epoch_num | 最大训练epoch数 | 500 | \ |
log_smooth_window | log队列长度,每次打印输出队列里的中间值 | 20 | \ |
print_batch_step | 设置打印log间隔 | 10 | \ |
save_model_dir | 设置模型保存路径 | output/{算法名称} | \ |
save_epoch_step | 设置模型保存间隔 | 3 | \ |
eval_batch_step | 设置模型评估间隔 | 2000 或 [1000, 2000] | 2000 表示每2000次迭代评估一次,[1000, 2000]表示从1000次迭代开始,每2000次评估一次 |
cal_metric_during_train | 设置是否在训练过程中评估指标,此时评估的是模型在当前batch下的指标 | true | \ |
load_static_weights | 设置预训练模型是否是静态图模式保存(目前仅检测算法需要) | true | \ |
pretrained_model | 设置加载预训练模型路径 | ./pretrain_models/CRNN/best_accuracy | \ |
checkpoints | 加载模型参数路径 | None | 用于中断后加载参数继续训练 |
use_visualdl | 设置是否启用visualdl进行可视化log展示 | False | 教程地址 |
infer_img | 设置预测图像路径或文件夹路径 | ./infer_img | \ |
character_dict_path | 设置字典路径 | ./ppocr/utils/ppocr_keys_v1.txt | \ |
max_text_length | 设置文本最大长度 | 25 | \ |
character_type | 设置字符类型 | ch | en/ch, en时将使用默认dict,ch时使用自定义dict |
use_space_char | 设置是否识别空格 | True | 仅在 character_type=ch 时支持空格 |
label_list | 设置方向分类器支持的角度 | ['0','180'] | 仅在方向分类器中生效 |
save_res_path | 设置检测模型的结果保存地址 | ./output/det_db/predicts_db.txt | 仅在检测模型中生效 |
Optimizer (ppocr/optimizer)
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
name | 优化器类名 | Adam | 目前支持Momentum ,Adam ,RMSProp , 见ppocr/optimizer/optimizer.py |
beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ |
beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ |
clip_norm | 所允许的二范数最大值 | \ | |
lr | 设置学习率decay方式 | - | \ |
name | 学习率decay类名 | Cosine | 目前支持Linear ,Cosine ,Step ,Piecewise , 见ppocr/optimizer/learning_rate.py |
learning_rate | 基础学习率 | 0.001 | \ |
regularizer | 设置网络正则化方式 | - | \ |
name | 正则化类名 | L2 | 目前支持L1 ,L2 , 见ppocr/optimizer/regularizer.py |
factor | 学习率衰减系数 | 0.00004 | \ |
Architecture (ppocr/modeling)
在PaddleOCR中,网络被划分为Transform,Backbone,Neck和Head四个阶段
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
model_type | 网络类型 | rec | 目前支持rec ,det ,cls |
algorithm | 模型名称 | CRNN | 支持列表见algorithm_overview |
Transform | 设置变换方式 | - | 目前仅rec类型的算法支持, 具体见ppocr/modeling/transform |
name | 变换方式类名 | TPS | 目前支持TPS |
num_fiducial | TPS控制点数 | 20 | 上下边各十个 |
loc_lr | 定位网络学习率 | 0.1 | \ |
model_name | 定位网络大小 | small | 目前支持small ,large |
Backbone | 设置网络backbone类名 | - | 具体见ppocr/modeling/backbones |
name | backbone类名 | ResNet | 目前支持MobileNetV3 ,ResNet |
layers | resnet层数 | 34 | 支持18,34,50,101,152,200 |
model_name | MobileNetV3 网络大小 | small | 支持small ,large |
Neck | 设置网络neck | - | 具体见ppocr/modeling/necks |
name | neck类名 | SequenceEncoder | 目前支持SequenceEncoder ,DBFPN |
encoder_type | SequenceEncoder编码器类型 | rnn | 支持reshape ,fc ,rnn |
hidden_size | rnn内部单元数 | 48 | \ |
out_channels | DBFPN输出通道数 | 256 | \ |
Head | 设置网络Head | - | 具体见ppocr/modeling/heads |
name | head类名 | CTCHead | 目前支持CTCHead ,DBHead ,ClsHead |
fc_decay | CTCHead正则化系数 | 0.0004 | \ |
k | DBHead二值化系数 | 50 | \ |
class_dim | ClsHead输出分类数 | 2 | \ |
Loss (ppocr/losses)
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
name | 网络loss类名 | CTCLoss | 目前支持CTCLoss ,DBLoss ,ClsLoss |
balance_loss | DBLossloss中是否对正负样本数量进行均衡(使用OHEM) | True | \ |
ohem_ratio | DBLossloss中的OHEM的负正样本比例 | 3 | \ |
main_loss_type | DBLossloss中shrink_map所采用的的loss | DiceLoss | 支持DiceLoss ,BCELoss |
alpha | DBLossloss中shrink_map_loss的系数 | 5 | \ |
beta | DBLossloss中threshold_map_loss的系数 | 10 | \ |
PostProcess (ppocr/postprocess)
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
name | 后处理类名 | CTCLabelDecode | 目前支持CTCLoss ,AttnLabelDecode ,DBPostProcess ,ClsPostProcess |
thresh | DBPostProcess中分割图进行二值化的阈值 | 0.3 | \ |
box_thresh | DBPostProcess中对输出框进行过滤的阈值,低于此阈值的框不会输出 | 0.7 | \ |
max_candidates | DBPostProcess中输出的最大文本框数量 | 1000 | |
unclip_ratio | DBPostProcess中对文本框进行放大的比例 | 2.0 | \ |
Metric (ppocr/metrics)
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
name | 指标评估方法名称 | CTCLabelDecode | 目前支持DetMetric ,RecMetric ,ClsMetric |
main_indicator | 主要指标,用于选取最优模型 | acc | 对于检测方法为hmean,识别和分类方法为acc |
Dataset (ppocr/data)
字段 | 用途 | 默认值 | 备注 |
---|---|---|---|
dataset | 每次迭代返回一个样本 | - | - |
name | dataset类名 | SimpleDataSet | 目前支持SimpleDataSet 和LMDBDataSet |
data_dir | 数据集图片存放路径 | ./train_data | \ |
label_file_list | 数据标签路径 | ["./train_data/train_list.txt"] | dataset为LMDBDataSet时不需要此参数 |
ratio_list | 数据集的比例 | [1.0] | 若label_file_list中有两个train_list,且ratio_list为[0.4,0.6],则从train_list1中采样40%,从train_list2中采样60%组合整个dataset |
transforms | 对图片和标签进行变换的方法列表 | [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] | 见ppocr/data/imaug |
loader | dataloader相关 | - | |
shuffle | 每个epoch是否将数据集顺序打乱 | True | \ |
batch_size_per_card | 训练时单卡batch size | 256 | \ |
drop_last | 是否丢弃因数据集样本数不能被 batch_size 整除而产生的最后一个不完整的mini-batch | True | \ |
num_workers | 用于加载数据的子进程个数,若为0即为不开启子进程,在主进程中进行数据加载 | 8 | \ |
3. 多语言配置文件生成
PaddleOCR目前已支持80种(除中文外)语种识别,configs/rec/multi_languages
路径下提供了一个多语言的配置文件模版: rec_multi_language_lite_train.yml。
您有两种方式创建所需的配置文件:
- 通过脚本自动生成
generate_multi_language_configs.py 可以帮助您生成多语言模型的配置文件
-
以意大利语为例,如果您的数据是按如下格式准备的:
|-train_data |- it_train.txt # 训练集标签 |- it_val.txt # 验证集标签 |- data |- word_001.jpg |- word_002.jpg |- word_003.jpg | ...
可以使用默认参数,生成配置文件:
# 该代码需要在指定目录运行 cd PaddleOCR/configs/rec/multi_language/ # 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件 python3 generate_multi_language_configs.py -l it
-
如果您的数据放置在其他位置,或希望使用自己的字典,可以通过指定相关参数来生成配置文件:
# -l或者--language字段是必须的 # --train修改训练集,--val修改验证集,--data_dir修改数据集目录,--dict修改字典路径, -o修改对应默认参数 cd PaddleOCR/configs/rec/multi_language/ python3 generate_multi_language_configs.py -l it \ # 语种 --train {path/of/train_label.txt} \ # 训练标签文件的路径 --val {path/of/val_label.txt} \ # 验证集标签文件的路径 --data_dir {train_data/path} \ # 训练数据的根目录 --dict {path/of/dict} \ # 字典文件路径 -o Global.use_gpu=False # 是否使用gpu ...
意大利文由拉丁字母组成,因此执行完命令后会得到名为 rec_latin_lite_train.yml 的配置文件。
-
手动修改配置文件
您也可以手动修改模版中的以下几个字段得到配置文件:
Global: use_gpu: True epoch_num: 500 ... character_type: it # 需要识别的语种 character_dict_path: {path/of/dict} # 字典文件所在路径 Train: dataset: name: SimpleDataSet data_dir: train_data/ # 数据存放根目录 label_file_list: ["./train_data/train_list.txt"] # 训练集label路径 ... Eval: dataset: name: SimpleDataSet data_dir: train_data/ # 数据存放根目录 label_file_list: ["./train_data/val_list.txt"] # 验证集label路径 ...
目前PaddleOCR支持的多语言算法有:
配置文件 | 算法名称 | backbone | trans | seq | pred | language | character_type |
---|---|---|---|---|---|---|---|
rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 | chinese_cht |
rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) | EN |
rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 | french |
rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 | german |
rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 | japan |
rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 | korean |
rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 | latin |
rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 | ar |
rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 | cyrillic |
rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 | devanagari |
更多支持语种请参考: 多语言模型