109 lines
2.7 KiB
YAML
109 lines
2.7 KiB
YAML
Global:
|
|
use_gpu: true
|
|
epoch_num: 5000
|
|
log_smooth_window: 20
|
|
print_batch_step: 2
|
|
save_model_dir: ./output/sast_r50_vd_tt/
|
|
save_epoch_step: 1000
|
|
# evaluation is run every 5000 iterations after the 4000th iteration
|
|
eval_batch_step: [4000, 5000]
|
|
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
|
load_static_weights: True
|
|
cal_metric_during_train: False
|
|
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
|
checkpoints:
|
|
save_inference_dir:
|
|
use_visualdl: False
|
|
infer_img:
|
|
save_res_path: ./output/sast_r50_vd_tt/predicts_sast.txt
|
|
|
|
Architecture:
|
|
model_type: det
|
|
algorithm: SAST
|
|
Transform:
|
|
Backbone:
|
|
name: ResNet_SAST
|
|
layers: 50
|
|
Neck:
|
|
name: SASTFPN
|
|
with_cab: True
|
|
Head:
|
|
name: SASTHead
|
|
|
|
Loss:
|
|
name: SASTLoss
|
|
|
|
Optimizer:
|
|
name: Adam
|
|
beta1: 0.9
|
|
beta2: 0.999
|
|
lr:
|
|
# name: Cosine
|
|
learning_rate: 0.001
|
|
# warmup_epoch: 0
|
|
regularizer:
|
|
name: 'L2'
|
|
factor: 0
|
|
|
|
PostProcess:
|
|
name: SASTPostProcess
|
|
score_thresh: 0.5
|
|
sample_pts_num: 6
|
|
nms_thresh: 0.2
|
|
expand_scale: 1.2
|
|
shrink_ratio_of_width: 0.2
|
|
|
|
Metric:
|
|
name: DetMetric
|
|
main_indicator: hmean
|
|
|
|
Train:
|
|
dataset:
|
|
name: SimpleDataSet
|
|
label_file_list: [./train_data/icdar2013/train_label_json.txt, ./train_data/icdar2015/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
|
|
ratio_list: [0.1, 0.45, 0.3, 0.15]
|
|
transforms:
|
|
- DecodeImage: # load image
|
|
img_mode: BGR
|
|
channel_first: False
|
|
- DetLabelEncode: # Class handling label
|
|
- SASTProcessTrain:
|
|
image_shape: [512, 512]
|
|
min_crop_side_ratio: 0.3
|
|
min_crop_size: 24
|
|
min_text_size: 4
|
|
max_text_size: 512
|
|
- KeepKeys:
|
|
keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
|
|
loader:
|
|
shuffle: True
|
|
drop_last: False
|
|
batch_size_per_card: 4
|
|
num_workers: 4
|
|
|
|
Eval:
|
|
dataset:
|
|
name: SimpleDataSet
|
|
data_dir: ./train_data/
|
|
label_file_list:
|
|
- ./train_data/total_text_icdar_14pt/test_label_json.txt
|
|
transforms:
|
|
- DecodeImage: # load image
|
|
img_mode: BGR
|
|
channel_first: False
|
|
- DetLabelEncode: # Class handling label
|
|
- DetResizeForTest:
|
|
resize_long: 768
|
|
- NormalizeImage:
|
|
scale: 1./255.
|
|
mean: [0.485, 0.456, 0.406]
|
|
std: [0.229, 0.224, 0.225]
|
|
order: 'hwc'
|
|
- ToCHWImage:
|
|
- KeepKeys:
|
|
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
|
|
loader:
|
|
shuffle: False
|
|
drop_last: False
|
|
batch_size_per_card: 1 # must be 1
|
|
num_workers: 2 |