PaddleOCR/deploy/slim/quantization/export_model.py

142 lines
5.4 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import argparse
import paddle
from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader
def export_single_model(quanter, model, infer_shape, save_path, logger):
quanter.save_quantized_model(
model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
logger.info('inference QAT model is saved to {}'.format(save_path))
def main():
############################################################################################################
# 1. quantization configs
############################################################################################################
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
logger = get_logger()
# build post process
post_process_class = build_post_process(config['PostProcess'],
config['Global'])
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
# get QAT model
quanter = QAT(config=quant_config)
quanter.quantize(model)
init_model(config, model)
model.eval()
# build metric
eval_class = build_metric(config['Metric'])
# build dataloader
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
use_srn = config['Architecture']['algorithm'] == "SRN"
model_type = config['Architecture']['model_type']
# start eval
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, use_srn)
logger.info('metric eval ***************')
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
infer_shape = [3, 32, 100] if config['Architecture'][
'model_type'] != "det" else [3, 640, 640]
save_path = config["Global"]["save_inference_dir"]
arch_config = config["Architecture"]
if arch_config["algorithm"] in ["Distillation", ]: # distillation model
for idx, name in enumerate(model.model_name_list):
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(quanter, model.model_list[idx], infer_shape,
sub_model_save_path, logger)
else:
save_path = os.path.join(save_path, "inference")
export_single_model(quanter, model, infer_shape, save_path, logger)
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess()
main()