116 lines
4.3 KiB
Python
116 lines
4.3 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import os
|
|
from paddle.io import Dataset
|
|
import lmdb
|
|
import cv2
|
|
|
|
from .imaug import transform, create_operators
|
|
|
|
|
|
class LMDBDateSet(Dataset):
|
|
def __init__(self, config, mode, logger):
|
|
super(LMDBDateSet, self).__init__()
|
|
|
|
global_config = config['Global']
|
|
dataset_config = config[mode]['dataset']
|
|
loader_config = config[mode]['loader']
|
|
batch_size = loader_config['batch_size_per_card']
|
|
data_dir = dataset_config['data_dir']
|
|
self.do_shuffle = loader_config['shuffle']
|
|
|
|
self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
|
|
logger.info("Initialize indexs of datasets:%s" % data_dir)
|
|
self.data_idx_order_list = self.dataset_traversal()
|
|
if self.do_shuffle:
|
|
np.random.shuffle(self.data_idx_order_list)
|
|
self.ops = create_operators(dataset_config['transforms'], global_config)
|
|
|
|
def load_hierarchical_lmdb_dataset(self, data_dir):
|
|
lmdb_sets = {}
|
|
dataset_idx = 0
|
|
for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
|
|
if not dirnames:
|
|
env = lmdb.open(
|
|
dirpath,
|
|
max_readers=32,
|
|
readonly=True,
|
|
lock=False,
|
|
readahead=False,
|
|
meminit=False)
|
|
txn = env.begin(write=False)
|
|
num_samples = int(txn.get('num-samples'.encode()))
|
|
lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
|
|
"txn":txn, "num_samples":num_samples}
|
|
dataset_idx += 1
|
|
return lmdb_sets
|
|
|
|
def dataset_traversal(self):
|
|
lmdb_num = len(self.lmdb_sets)
|
|
total_sample_num = 0
|
|
for lno in range(lmdb_num):
|
|
total_sample_num += self.lmdb_sets[lno]['num_samples']
|
|
data_idx_order_list = np.zeros((total_sample_num, 2))
|
|
beg_idx = 0
|
|
for lno in range(lmdb_num):
|
|
tmp_sample_num = self.lmdb_sets[lno]['num_samples']
|
|
end_idx = beg_idx + tmp_sample_num
|
|
data_idx_order_list[beg_idx:end_idx, 0] = lno
|
|
data_idx_order_list[beg_idx:end_idx, 1] \
|
|
= list(range(tmp_sample_num))
|
|
data_idx_order_list[beg_idx:end_idx, 1] += 1
|
|
beg_idx = beg_idx + tmp_sample_num
|
|
return data_idx_order_list
|
|
|
|
def get_img_data(self, value):
|
|
"""get_img_data"""
|
|
if not value:
|
|
return None
|
|
imgdata = np.frombuffer(value, dtype='uint8')
|
|
if imgdata is None:
|
|
return None
|
|
imgori = cv2.imdecode(imgdata, 1)
|
|
if imgori is None:
|
|
return None
|
|
return imgori
|
|
|
|
def get_lmdb_sample_info(self, txn, index):
|
|
label_key = 'label-%09d'.encode() % index
|
|
label = txn.get(label_key)
|
|
if label is None:
|
|
return None
|
|
label = label.decode('utf-8')
|
|
img_key = 'image-%09d'.encode() % index
|
|
imgbuf = txn.get(img_key)
|
|
return imgbuf, label
|
|
|
|
def __getitem__(self, idx):
|
|
lmdb_idx, file_idx = self.data_idx_order_list[idx]
|
|
lmdb_idx = int(lmdb_idx)
|
|
file_idx = int(file_idx)
|
|
sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
|
|
file_idx)
|
|
if sample_info is None:
|
|
return self.__getitem__(np.random.randint(self.__len__()))
|
|
img, label = sample_info
|
|
data = {'image': img, 'label': label}
|
|
outs = transform(data, self.ops)
|
|
if outs is None:
|
|
return self.__getitem__(np.random.randint(self.__len__()))
|
|
return outs
|
|
|
|
def __len__(self):
|
|
return self.data_idx_order_list.shape[0]
|