6.0 KiB
6.0 KiB
版面分析使用说明
1. 安装whl包
pip install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
2. 使用
使用layoutparser识别给定文档的布局:
import cv2
import layoutparser as lp
image = cv2.imread("doc/table/layout.jpg")
image = image[..., ::-1]
# 加载模型
model = lp.PaddleDetectionLayoutModel(config_path="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
threshold=0.5,
label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},
enforce_cpu=False,
enable_mkldnn=True)
# 检测
layout = model.detect(image)
# 显示结果
show_img = lp.draw_box(image, layout, box_width=3, show_element_type=True)
show_img.show()
下图展示了结果,不同颜色的检测框表示不同的类别,并通过show_element_type
在框的左上角显示具体类别:
PaddleDetectionLayoutModel
函数参数说明如下:
参数 | 含义 | 默认值 | 备注 |
---|---|---|---|
config_path | 模型配置路径 | None | 指定config_path会自动下载模型(仅第一次,之后模型存在,不会再下载) |
model_path | 模型路径 | None | 本地模型路径,config_path和model_path必须设置一个,不能同时为None |
threshold | 预测得分的阈值 | 0.5 | \ |
input_shape | reshape之后图片尺寸 | [3,640,640] | \ |
batch_size | 测试batch size | 1 | \ |
label_map | 类别映射表 | None | 设置config_path时,可以为None,根据数据集名称自动获取label_map |
enforce_cpu | 代码是否使用CPU运行 | False | 设置为False表示使用GPU,True表示强制使用CPU |
enforce_mkldnn | CPU预测中是否开启MKLDNN加速 | True | \ |
thread_num | 设置CPU线程数 | 10 | \ |
目前支持以下几种模型配置和label map,您可以通过修改 --config_path
和 --label_map
使用这些模型,从而检测不同类型的内容:
dataset | config_path | label_map |
---|---|---|
TableBank word | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_word/config | {0:"Table"} |
TableBank latex | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_latex/config | {0:"Table"} |
PubLayNet | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config | {0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"} |
- TableBank word和TableBank latex分别在word文档、latex文档数据集训练;
- 下载的TableBank数据集里同时包含word和latex。
3. 后处理
版面分析检测包含多个类别,如果只想获取指定类别(如"Text"类别)的检测框、可以使用下述代码:
# 接上面代码
# 首先过滤特定文本类型的区域
text_blocks = lp.Layout([b for b in layout if b.type=='Text'])
figure_blocks = lp.Layout([b for b in layout if b.type=='Figure'])
# 因为在图像区域内可能检测到文本区域,所以只需要删除它们
text_blocks = lp.Layout([b for b in text_blocks \
if not any(b.is_in(b_fig) for b_fig in figure_blocks)])
# 对文本区域排序并分配id
h, w = image.shape[:2]
left_interval = lp.Interval(0, w/2*1.05, axis='x').put_on_canvas(image)
left_blocks = text_blocks.filter_by(left_interval, center=True)
left_blocks.sort(key = lambda b:b.coordinates[1])
right_blocks = [b for b in text_blocks if b not in left_blocks]
right_blocks.sort(key = lambda b:b.coordinates[1])
# 最终合并两个列表,并按顺序添加索引
text_blocks = lp.Layout([b.set(id = idx) for idx, b in enumerate(left_blocks + right_blocks)])
# 显示结果
show_img = lp.draw_box(image, text_blocks,
box_width=3,
show_element_id=True)
show_img.show()
显示只有"Text"类别的结果:
4. 指标
Dataset | mAP | CPU time cost | GPU time cost |
---|---|---|---|
PubLayNet | 93.6 | 1713.7ms | 66.6ms |
TableBank | 96.2 | 1968.4ms | 65.1ms |
Envrionment:
CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,24core
GPU: a single NVIDIA Tesla P40
5. 训练版面分析模型
上述模型基于PaddleDetection 训练,如果您想训练自己的版面分析模型,请参考:train_layoutparser_model