72 lines
2.7 KiB
YAML
72 lines
2.7 KiB
YAML
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
|
||
rpc_port: 18091
|
||
|
||
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
|
||
http_port: 9998
|
||
|
||
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
|
||
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
|
||
worker_num: 10
|
||
|
||
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
|
||
build_dag_each_worker: False
|
||
|
||
dag:
|
||
#op资源类型, True, 为线程模型;False,为进程模型
|
||
is_thread_op: False
|
||
|
||
#重试次数
|
||
retry: 10
|
||
|
||
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
|
||
use_profile: True
|
||
|
||
tracer:
|
||
interval_s: 10
|
||
op:
|
||
det:
|
||
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
|
||
concurrency: 8
|
||
|
||
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
|
||
local_service_conf:
|
||
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
|
||
client_type: local_predictor
|
||
|
||
#det模型路径
|
||
model_config: ./ppocr_det_mobile_2.0_serving
|
||
|
||
#Fetch结果列表,以client_config中fetch_var的alias_name为准
|
||
fetch_list: ["save_infer_model/scale_0.tmp_1"]
|
||
|
||
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
|
||
devices: "0"
|
||
|
||
ir_optim: True
|
||
rec:
|
||
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
|
||
concurrency: 4
|
||
|
||
#超时时间, 单位ms
|
||
timeout: -1
|
||
|
||
#Serving交互重试次数,默认不重试
|
||
retry: 1
|
||
|
||
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
|
||
local_service_conf:
|
||
|
||
#client类型,包括brpc, grpc和local_predictor。local_predictor不启动Serving服务,进程内预测
|
||
client_type: local_predictor
|
||
|
||
#rec模型路径
|
||
model_config: ./ppocr_rec_mobile_2.0_serving
|
||
|
||
#Fetch结果列表,以client_config中fetch_var的alias_name为准
|
||
fetch_list: ["save_infer_model/scale_0.tmp_1"]
|
||
|
||
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
|
||
devices: "0"
|
||
|
||
ir_optim: True
|