119 lines
4.3 KiB
Python
Executable File
119 lines
4.3 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
|
sys.path.append(
|
|
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
|
|
|
import argparse
|
|
|
|
import paddle
|
|
from paddle.jit import to_static
|
|
|
|
from ppocr.modeling.architectures import build_model
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.utils.save_load import init_model
|
|
from ppocr.utils.logging import get_logger
|
|
from tools.program import load_config, merge_config, ArgsParser
|
|
from ppocr.metrics import build_metric
|
|
import tools.program as program
|
|
from paddleslim.dygraph.quant import QAT
|
|
from ppocr.data import build_dataloader
|
|
|
|
|
|
def main():
|
|
############################################################################################################
|
|
# 1. quantization configs
|
|
############################################################################################################
|
|
quant_config = {
|
|
# weight preprocess type, default is None and no preprocessing is performed.
|
|
'weight_preprocess_type': None,
|
|
# activation preprocess type, default is None and no preprocessing is performed.
|
|
'activation_preprocess_type': None,
|
|
# weight quantize type, default is 'channel_wise_abs_max'
|
|
'weight_quantize_type': 'channel_wise_abs_max',
|
|
# activation quantize type, default is 'moving_average_abs_max'
|
|
'activation_quantize_type': 'moving_average_abs_max',
|
|
# weight quantize bit num, default is 8
|
|
'weight_bits': 8,
|
|
# activation quantize bit num, default is 8
|
|
'activation_bits': 8,
|
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
|
'dtype': 'int8',
|
|
# window size for 'range_abs_max' quantization. default is 10000
|
|
'window_size': 10000,
|
|
# The decay coefficient of moving average, default is 0.9
|
|
'moving_rate': 0.9,
|
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
|
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
|
}
|
|
FLAGS = ArgsParser().parse_args()
|
|
config = load_config(FLAGS.config)
|
|
merge_config(FLAGS.opt)
|
|
logger = get_logger()
|
|
# build post process
|
|
|
|
post_process_class = build_post_process(config['PostProcess'],
|
|
config['Global'])
|
|
|
|
# build model
|
|
# for rec algorithm
|
|
if hasattr(post_process_class, 'character'):
|
|
char_num = len(getattr(post_process_class, 'character'))
|
|
config['Architecture']["Head"]['out_channels'] = char_num
|
|
model = build_model(config['Architecture'])
|
|
|
|
# get QAT model
|
|
quanter = QAT(config=quant_config)
|
|
quanter.quantize(model)
|
|
|
|
init_model(config, model, logger)
|
|
model.eval()
|
|
|
|
# build metric
|
|
eval_class = build_metric(config['Metric'])
|
|
|
|
# build dataloader
|
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
|
|
|
# start eval
|
|
metirc = program.eval(model, valid_dataloader, post_process_class,
|
|
eval_class)
|
|
logger.info('metric eval ***************')
|
|
for k, v in metirc.items():
|
|
logger.info('{}:{}'.format(k, v))
|
|
|
|
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
|
|
infer_shape = [3, 32, 100] if config['Architecture'][
|
|
'model_type'] != "det" else [3, 640, 640]
|
|
|
|
quanter.save_quantized_model(
|
|
model,
|
|
save_path,
|
|
input_spec=[
|
|
paddle.static.InputSpec(
|
|
shape=[None] + infer_shape, dtype='float32')
|
|
])
|
|
logger.info('inference QAT model is saved to {}'.format(save_path))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config, device, logger, vdl_writer = program.preprocess()
|
|
main()
|