4.1 KiB
文字识别
数据准备
PaddleOCR 支持 lmdb
和 通用数据
两种数据格式,请按如下步骤设置数据集:
训练数据的默认存储路径是 PaddleOCR/train_data
,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
ln -sf <path/to/dataset> <path/to/paddle_detection>/train_data/dataset
- 数据下载
若您本地没有数据集,可以参考DTRB,下载 benchmark 所需的lmdb格式数据集。也可在官网下载 icdar2015 数据,用于快速验证。
- 使用自己数据集
若您希望使用自己的数据进行训练,请参考下文组织您的数据。
- 训练集
首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(rec_gt_train.txt)记录图片路径和标签。
- 注意: 默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错
" 图像文件名 图像标注信息 "
train_data/train_0001.jpg 简单可依赖
train_data/train_0002.jpg 用科技让复杂的世界更简单
最终训练集应有如下文件结构:
|-train_data |- rec_gt_train.txt |- train_imags |- train_001.jpg |- train_002.jpg |- train_003.jpg | ...
- 评估集
同训练集类似,评估集也需要提供一个包含所有图片的文件夹(eval_images)和一个rec_gt_eval.txt,评估集的结构如下所示:
|-train_data |- rec_gt_eval.txt |- eval_imags |- eval_001.jpg |- eval_002.jpg |- eval_003.jpg | ...
- 字典
最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。
因此字典需要包含所有希望被正确识别的字符,{word_dict_name}.txt需要写成如下格式:
L d a D R n
word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,“and” 将被映射成 [2 5 1]
ppocr/utils/ppocr_keys_v1.txt
是一个包含6623个字符的中文字典,
ppocr/utils/ic15_dict.txt
是一个包含36个字符的英文字典,
您可以按需使用。如需自定义dic文件,请修改 configs/rec/rec_icdar15_train.yml
中的 character_dict_path
字段。
启动训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以RCNN中文识别模型为例:
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
python tools/train.py -c configs/rec/rec_icdar15_train.yml
PaddleOCR支持训练和评估交替进行, 可以在 configs/rec/rec_icdar15_train.yml
中修改 eval_batch_step
设置评估频率,默认每2000个iter评估一次。评估过程中默认将最佳acc模型,保存为 output/rec/best_accuracy
。
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
评估
评估数据集可以通过 configs/rec/rec_icdar15_reader.yml
修改EvalReader中的 label_file_path
设置。
export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.pretrain_weights 为待测权重
python tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.pretrain_weights={path/to/weights}/best_accuracy
测试
- 训练引擎的预测
PaddleOCR 提供了训练好的中文模型,可以使用
默认预测图片存储在 infer_img
里,通过 Global.pretrain_weights 指定权重:
python tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.pretrain_weights={path/to/weights}/best_accuracy
得到输入图像的预测结果:
infer_img: infer_img/328_4.jpg
# 字符在字典中的索引
[1863 921 55 155 1863 4209 3344 486 914 1863 4918]
# 预测结果
冷库专用冷冻液/载冷剂
得到预测结果后,脚本会自动将权重转换为inference model 并保存在 rec_inference 下:
|-rec_inference |- model |- params