232 lines
9.2 KiB
Python
232 lines
9.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import os
|
||
import sys
|
||
|
||
__dir__ = os.path.dirname(__file__)
|
||
sys.path.append(os.path.join(__dir__, ''))
|
||
|
||
import cv2
|
||
import numpy as np
|
||
from pathlib import Path
|
||
import tarfile
|
||
import requests
|
||
from tqdm import tqdm
|
||
|
||
from tools.infer import predict_system
|
||
from ppocr.utils.utility import initial_logger
|
||
|
||
logger = initial_logger()
|
||
from ppocr.utils.utility import check_and_read_gif
|
||
|
||
__all__ = ['PaddleOCR']
|
||
|
||
model_params = {
|
||
'ch_det_mv3_db': {
|
||
'url':
|
||
'https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar',
|
||
'algorithm': 'DB',
|
||
},
|
||
'ch_rec_mv3_crnn_enhance': {
|
||
'url':
|
||
'https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar',
|
||
'algorithm': 'CRNN'
|
||
},
|
||
}
|
||
|
||
SUPPORT_DET_MODEL = ['DB']
|
||
SUPPORT_REC_MODEL = ['Rosetta', 'CRNN', 'STARNet', 'RARE']
|
||
|
||
|
||
def download_with_progressbar(url, save_path):
|
||
response = requests.get(url, stream=True)
|
||
total_size_in_bytes = int(response.headers.get('content-length', 0))
|
||
block_size = 1024 # 1 Kibibyte
|
||
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
|
||
with open(save_path, 'wb') as file:
|
||
for data in response.iter_content(block_size):
|
||
progress_bar.update(len(data))
|
||
file.write(data)
|
||
progress_bar.close()
|
||
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
||
logger.error("ERROR, something went wrong")
|
||
sys.exit(0)
|
||
|
||
|
||
def download_and_unzip(url, model_storage_directory):
|
||
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
|
||
print('download {} to {}'.format(url, tmp_path))
|
||
os.makedirs(model_storage_directory, exist_ok=True)
|
||
download_with_progressbar(url, tmp_path)
|
||
with tarfile.open(tmp_path, 'r') as tarObj:
|
||
for filename in tarObj.getnames():
|
||
tarObj.extract(filename, model_storage_directory)
|
||
os.remove(tmp_path)
|
||
|
||
|
||
def maybe_download(model_storage_directory, model_name, mode='det'):
|
||
algorithm = None
|
||
# using custom model
|
||
if os.path.exists(os.path.join(model_name, 'model')) and os.path.exists(
|
||
os.path.join(model_name, 'params')):
|
||
return model_name, algorithm
|
||
# using the model of paddleocr
|
||
model_path = os.path.join(model_storage_directory, model_name)
|
||
if not os.path.exists(os.path.join(model_path,
|
||
'model')) or not os.path.exists(
|
||
os.path.join(model_path, 'params')):
|
||
assert model_name in model_params, 'model must in {}'.format(
|
||
model_params.keys())
|
||
download_and_unzip(model_params[model_name]['url'],
|
||
model_storage_directory)
|
||
algorithm = model_params[model_name]['algorithm']
|
||
return model_path, algorithm
|
||
|
||
|
||
def parse_args():
|
||
import argparse
|
||
|
||
def str2bool(v):
|
||
return v.lower() in ("true", "t", "1")
|
||
|
||
parser = argparse.ArgumentParser()
|
||
# params for prediction engine
|
||
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
||
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
||
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
||
parser.add_argument("--gpu_mem", type=int, default=8000)
|
||
|
||
# params for text detector
|
||
parser.add_argument("--image_dir", type=str)
|
||
parser.add_argument("--det_algorithm", type=str, default='DB')
|
||
parser.add_argument("--det_model_name", type=str, default='ch_det_mv3_db')
|
||
parser.add_argument("--det_max_side_len", type=float, default=960)
|
||
|
||
# DB parmas
|
||
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
||
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
|
||
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
|
||
|
||
# EAST parmas
|
||
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
||
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
||
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
|
||
|
||
# params for text recognizer
|
||
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
|
||
parser.add_argument(
|
||
"--rec_model_name", type=str, default='ch_rec_mv3_crnn_enhance')
|
||
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
||
parser.add_argument("--rec_char_type", type=str, default='ch')
|
||
parser.add_argument("--rec_batch_num", type=int, default=30)
|
||
parser.add_argument(
|
||
"--rec_char_dict_path",
|
||
type=str,
|
||
default="./ppocr/utils/ppocr_keys_v1.txt")
|
||
parser.add_argument("--use_space_char", type=bool, default=True)
|
||
parser.add_argument("--enable_mkldnn", type=bool, default=False)
|
||
|
||
parser.add_argument("--model_storage_directory", type=str, default=False)
|
||
parser.add_argument("--det", type=str2bool, default=True)
|
||
parser.add_argument("--rec", type=str2bool, default=True)
|
||
return parser.parse_args()
|
||
|
||
|
||
class PaddleOCR(predict_system.TextSystem):
|
||
def __init__(self,
|
||
det_model_name='ch_det_mv3_db',
|
||
rec_model_name='ch_rec_mv3_crnn_enhance',
|
||
model_storage_directory=None,
|
||
log_level=20,
|
||
**kwargs):
|
||
"""
|
||
paddleocr package
|
||
args:
|
||
det_model_name: det_model name, keep same with filename in paddleocr. default is ch_det_mv3_db
|
||
det_model_name: rec_model name, keep same with filename in paddleocr. default is ch_rec_mv3_crnn_enhance
|
||
model_storage_directory: model save path. default is ~/.paddleocr
|
||
det model will save to model_storage_directory/det_model
|
||
rec model will save to model_storage_directory/rec_model
|
||
log_level:
|
||
**kwargs: other params show in paddleocr --help
|
||
"""
|
||
logger.setLevel(log_level)
|
||
postprocess_params = parse_args()
|
||
# init model dir
|
||
if model_storage_directory:
|
||
self.model_storage_directory = model_storage_directory
|
||
else:
|
||
self.model_storage_directory = os.path.expanduser(
|
||
"~/.paddleocr/") + '/model'
|
||
Path(self.model_storage_directory).mkdir(parents=True, exist_ok=True)
|
||
|
||
# download model
|
||
det_model_path, det_algorithm = maybe_download(
|
||
self.model_storage_directory, det_model_name, 'det')
|
||
rec_model_path, rec_algorithm = maybe_download(
|
||
self.model_storage_directory, rec_model_name, 'rec')
|
||
# update model and post_process params
|
||
postprocess_params.__dict__.update(**kwargs)
|
||
postprocess_params.det_model_dir = det_model_path
|
||
postprocess_params.rec_model_dir = rec_model_path
|
||
if det_algorithm is not None:
|
||
postprocess_params.det_algorithm = det_algorithm
|
||
if rec_algorithm is not None:
|
||
postprocess_params.rec_algorithm = rec_algorithm
|
||
|
||
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
|
||
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
|
||
sys.exit(0)
|
||
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
|
||
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
|
||
sys.exit(0)
|
||
|
||
postprocess_params.rec_char_dict_path = Path(
|
||
__file__).parent / postprocess_params.rec_char_dict_path
|
||
|
||
# init det_model and rec_model
|
||
super().__init__(postprocess_params)
|
||
|
||
def ocr(self, img, det=True, rec=True):
|
||
"""
|
||
ocr with paddleocr
|
||
args:
|
||
img: img for ocr, support ndarray, img_path and list or ndarray
|
||
det: use text detection or not, if false, only rec will be exec. default is True
|
||
rec: use text recognition or not, if false, only det will be exec. default is True
|
||
"""
|
||
assert isinstance(img, (np.ndarray, list, str))
|
||
if isinstance(img, str):
|
||
image_file = img
|
||
img, flag = check_and_read_gif(image_file)
|
||
if not flag:
|
||
img = cv2.imread(image_file)
|
||
if img is None:
|
||
logger.error("error in loading image:{}".format(image_file))
|
||
return None
|
||
if det and rec:
|
||
dt_boxes, rec_res = self.__call__(img)
|
||
return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
|
||
elif det and not rec:
|
||
dt_boxes, elapse = self.text_detector(img)
|
||
if dt_boxes is None:
|
||
return None
|
||
return [box.tolist() for box in dt_boxes]
|
||
else:
|
||
if not isinstance(img, list):
|
||
img = [img]
|
||
rec_res, elapse = self.text_recognizer(img)
|
||
return rec_res
|