PaddleOCR/paddleocr.py

232 lines
9.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm
from tools.infer import predict_system
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import check_and_read_gif
__all__ = ['PaddleOCR']
model_params = {
'ch_det_mv3_db': {
'url':
'https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar',
'algorithm': 'DB',
},
'ch_rec_mv3_crnn_enhance': {
'url':
'https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar',
'algorithm': 'CRNN'
},
}
SUPPORT_DET_MODEL = ['DB']
SUPPORT_REC_MODEL = ['Rosetta', 'CRNN', 'STARNet', 'RARE']
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
logger.error("ERROR, something went wrong")
sys.exit(0)
def download_and_unzip(url, model_storage_directory):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for filename in tarObj.getnames():
tarObj.extract(filename, model_storage_directory)
os.remove(tmp_path)
def maybe_download(model_storage_directory, model_name, mode='det'):
algorithm = None
# using custom model
if os.path.exists(os.path.join(model_name, 'model')) and os.path.exists(
os.path.join(model_name, 'params')):
return model_name, algorithm
# using the model of paddleocr
model_path = os.path.join(model_storage_directory, model_name)
if not os.path.exists(os.path.join(model_path,
'model')) or not os.path.exists(
os.path.join(model_path, 'params')):
assert model_name in model_params, 'model must in {}'.format(
model_params.keys())
download_and_unzip(model_params[model_name]['url'],
model_storage_directory)
algorithm = model_params[model_name]['algorithm']
return model_path, algorithm
def parse_args():
import argparse
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
# params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
# params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_name", type=str, default='ch_det_mv3_db')
parser.add_argument("--det_max_side_len", type=float, default=960)
# DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
# params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument(
"--rec_model_name", type=str, default='ch_rec_mv3_crnn_enhance')
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=30)
parser.add_argument(
"--rec_char_dict_path",
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
parser.add_argument("--use_space_char", type=bool, default=True)
parser.add_argument("--enable_mkldnn", type=bool, default=False)
parser.add_argument("--model_storage_directory", type=str, default=False)
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
return parser.parse_args()
class PaddleOCR(predict_system.TextSystem):
def __init__(self,
det_model_name='ch_det_mv3_db',
rec_model_name='ch_rec_mv3_crnn_enhance',
model_storage_directory=None,
log_level=20,
**kwargs):
"""
paddleocr package
args:
det_model_name: det_model name, keep same with filename in paddleocr. default is ch_det_mv3_db
det_model_name: rec_model name, keep same with filename in paddleocr. default is ch_rec_mv3_crnn_enhance
model_storage_directory: model save path. default is ~/.paddleocr
det model will save to model_storage_directory/det_model
rec model will save to model_storage_directory/rec_model
log_level:
**kwargs: other params show in paddleocr --help
"""
logger.setLevel(log_level)
postprocess_params = parse_args()
# init model dir
if model_storage_directory:
self.model_storage_directory = model_storage_directory
else:
self.model_storage_directory = os.path.expanduser(
"~/.paddleocr/") + '/model'
Path(self.model_storage_directory).mkdir(parents=True, exist_ok=True)
# download model
det_model_path, det_algorithm = maybe_download(
self.model_storage_directory, det_model_name, 'det')
rec_model_path, rec_algorithm = maybe_download(
self.model_storage_directory, rec_model_name, 'rec')
# update model and post_process params
postprocess_params.__dict__.update(**kwargs)
postprocess_params.det_model_dir = det_model_path
postprocess_params.rec_model_dir = rec_model_path
if det_algorithm is not None:
postprocess_params.det_algorithm = det_algorithm
if rec_algorithm is not None:
postprocess_params.rec_algorithm = rec_algorithm
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0)
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
postprocess_params.rec_char_dict_path = Path(
__file__).parent / postprocess_params.rec_char_dict_path
# init det_model and rec_model
super().__init__(postprocess_params)
def ocr(self, img, det=True, rec=True):
"""
ocr with paddleocr
args
img: img for ocr, support ndarray, img_path and list or ndarray
det: use text detection or not, if false, only rec will be exec. default is True
rec: use text recognition or not, if false, only det will be exec. default is True
"""
assert isinstance(img, (np.ndarray, list, str))
if isinstance(img, str):
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if det and rec:
dt_boxes, rec_res = self.__call__(img)
return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
elif det and not rec:
dt_boxes, elapse = self.text_detector(img)
if dt_boxes is None:
return None
return [box.tolist() for box in dt_boxes]
else:
if not isinstance(img, list):
img = [img]
rec_res, elapse = self.text_recognizer(img)
return rec_res