PaddleOCR/test1/table
MissPenguin 77b554fa25 add doc for table training 2021-07-06 11:53:49 +00:00
..
table_metric rename test to test1 2021-06-18 04:55:44 +00:00
tablepyxl rename test to test1 2021-06-18 04:55:44 +00:00
README.md opt doc 2021-06-23 12:45:05 +08:00
README_ch.md add doc for table training 2021-07-06 11:53:49 +00:00
__init__.py rename test to test1 2021-06-18 04:55:44 +00:00
eval_table.py rename test to test1 2021-06-18 04:55:44 +00:00
matcher.py rename test to test1 2021-06-18 04:55:44 +00:00
predict_structure.py rename structure 2 table 2021-06-23 12:28:32 +08:00
predict_table.py rename test to test1 2021-06-18 04:55:44 +00:00

README.md

Table structure and content prediction

1. pipeline

The ocr of the table mainly contains three models

  1. Single line text detection-DB
  2. Single line text recognition-CRNN
  3. Table structure and cell coordinate prediction-RARE

The table ocr flow chart is as follows

tableocr_pipeline

  1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
  2. The table structure and cell coordinates is predicted by RARE model.
  3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
  4. The cell recognition result and the table structure together construct the html string of the table.

2. How to use

2.1 Train

TBD

2.2 Eval

First cd to the PaddleOCR/ppstructure directory

The table uses TEDS (Tree-Edit-Distance-based Similarity) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:

{"PMC4289340_004_00.png": [["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>",  "</tbody>", "</table>", "</body>", "</html>"], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]]}

In gt json, the key is the image name, the value is the corresponding gt, and gt is a list composed of four items, and each item is

  1. HTML string list of table structure
  2. The coordinates of each cell (not including the empty text in the cell)
  3. The text information in each cell (not including the empty text in the cell)
  4. The text information in each cell (including the empty text in the cell)

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.

python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json

2.3 Inference

First cd to the PaddleOCR/ppstructure directory

python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table

After running, the excel sheet of each picture will be saved in the directory specified by the output field