4.0 KiB
TEXT ANGLE CLASSIFICATION
DATA PREPARATION
Please organize the dataset as follows:
The default storage path for training data is PaddleOCR/train_data/cls
, if you already have a dataset on your disk, just create a soft link to the dataset directory:
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
please refer to the following to organize your data.
- Training set
First put the training images in the same folder (train_images), and use a txt file (cls_gt_train.txt) to store the image path and label.
- Note: by default, the image path and image label are split with
\t
, if you use other methods to split, it will cause training error
0 and 180 indicate that the angle of the image is 0 degrees and 180 degrees, respectively.
" Image file name Image annotation "
train_data/word_001.jpg 0
train_data/word_002.jpg 180
The final training set should have the following file structure:
|-train_data
|-cls
|- cls_gt_train.txt
|- train
|- word_001.png
|- word_002.jpg
|- word_003.jpg
| ...
- Test set
Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a cls_gt_test.txt. The structure of the test set is as follows:
|-train_data
|-cls
|- cls_gt_test.txt
|- test
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
TRAINING
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.
Start training:
# Set PYTHONPATH path
export PYTHONPATH=$PYTHONPATH:.
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
# Training icdar15 English data
python3 tools/train.py -c configs/cls/cls_mv3.yml
- Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set distort: true
in the configuration file.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, RandAugment.
Except for RandAugment, each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: randaugment.py img_tools.py
- Training
PaddleOCR supports alternating training and evaluation. You can modify eval_batch_step
in configs/cls/cls_mv3.yml
to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under output/cls_mv3/best_accuracy
during the evaluation process.
If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.
Note that the configuration file for prediction/evaluation must be consistent with the training.
EVALUATION
The evaluation data set can be modified via configs/cls/cls_reader.yml
setting of label_file_path
in EvalReader.
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
PREDICTION
- Training engine prediction
Using the model trained by paddleocr, you can quickly get prediction through the following script.
The default prediction picture is stored in infer_img
, and the weight is specified via -o Global.checkpoints
:
# Predict English results
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
Input image:
Get the prediction result of the input image:
infer_img: doc/imgs_words/en/word_1.png
scores: [[0.93161047 0.06838956]]
label: [0]