512 lines
18 KiB
Python
512 lines
18 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import string
|
|
|
|
|
|
class ClsLabelEncode(object):
|
|
def __init__(self, label_list, **kwargs):
|
|
self.label_list = label_list
|
|
|
|
def __call__(self, data):
|
|
label = data['label']
|
|
if label not in self.label_list:
|
|
return None
|
|
label = self.label_list.index(label)
|
|
data['label'] = label
|
|
return data
|
|
|
|
|
|
class DetLabelEncode(object):
|
|
def __init__(self, **kwargs):
|
|
pass
|
|
|
|
def __call__(self, data):
|
|
import json
|
|
label = data['label']
|
|
label = json.loads(label)
|
|
nBox = len(label)
|
|
boxes, txts, txt_tags = [], [], []
|
|
for bno in range(0, nBox):
|
|
box = label[bno]['points']
|
|
txt = label[bno]['transcription']
|
|
boxes.append(box)
|
|
txts.append(txt)
|
|
if txt in ['*', '###']:
|
|
txt_tags.append(True)
|
|
else:
|
|
txt_tags.append(False)
|
|
boxes = self.expand_points_num(boxes)
|
|
boxes = np.array(boxes, dtype=np.float32)
|
|
txt_tags = np.array(txt_tags, dtype=np.bool)
|
|
|
|
data['polys'] = boxes
|
|
data['texts'] = txts
|
|
data['ignore_tags'] = txt_tags
|
|
return data
|
|
|
|
def order_points_clockwise(self, pts):
|
|
rect = np.zeros((4, 2), dtype="float32")
|
|
s = pts.sum(axis=1)
|
|
rect[0] = pts[np.argmin(s)]
|
|
rect[2] = pts[np.argmax(s)]
|
|
diff = np.diff(pts, axis=1)
|
|
rect[1] = pts[np.argmin(diff)]
|
|
rect[3] = pts[np.argmax(diff)]
|
|
return rect
|
|
|
|
def expand_points_num(self, boxes):
|
|
max_points_num = 0
|
|
for box in boxes:
|
|
if len(box) > max_points_num:
|
|
max_points_num = len(box)
|
|
ex_boxes = []
|
|
for box in boxes:
|
|
ex_box = box + [box[-1]] * (max_points_num - len(box))
|
|
ex_boxes.append(ex_box)
|
|
return ex_boxes
|
|
|
|
|
|
class BaseRecLabelEncode(object):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False):
|
|
support_character_type = [
|
|
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
|
|
'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
|
|
'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
|
|
'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
|
|
]
|
|
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
|
|
support_character_type, character_type)
|
|
|
|
self.max_text_len = max_text_length
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
if character_type == "en":
|
|
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
dict_character = list(self.character_str)
|
|
elif character_type == "EN_symbol":
|
|
# same with ASTER setting (use 94 char).
|
|
self.character_str = string.printable[:-6]
|
|
dict_character = list(self.character_str)
|
|
elif character_type in support_character_type:
|
|
self.character_str = ""
|
|
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
|
|
character_type)
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
|
self.character_str += line
|
|
if use_space_char:
|
|
self.character_str += " "
|
|
dict_character = list(self.character_str)
|
|
self.character_type = character_type
|
|
dict_character = self.add_special_char(dict_character)
|
|
self.dict = {}
|
|
for i, char in enumerate(dict_character):
|
|
self.dict[char] = i
|
|
self.character = dict_character
|
|
|
|
def add_special_char(self, dict_character):
|
|
return dict_character
|
|
|
|
def encode(self, text):
|
|
"""convert text-label into text-index.
|
|
input:
|
|
text: text labels of each image. [batch_size]
|
|
|
|
output:
|
|
text: concatenated text index for CTCLoss.
|
|
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
|
|
length: length of each text. [batch_size]
|
|
"""
|
|
if len(text) == 0 or len(text) > self.max_text_len:
|
|
return None
|
|
if self.character_type == "en":
|
|
text = text.lower()
|
|
text_list = []
|
|
for char in text:
|
|
if char not in self.dict:
|
|
# logger = get_logger()
|
|
# logger.warning('{} is not in dict'.format(char))
|
|
continue
|
|
text_list.append(self.dict[char])
|
|
if len(text_list) == 0:
|
|
return None
|
|
return text_list
|
|
|
|
|
|
class CTCLabelEncode(BaseRecLabelEncode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(CTCLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def __call__(self, data):
|
|
text = data['label']
|
|
text = self.encode(text)
|
|
if text is None:
|
|
return None
|
|
data['length'] = np.array(len(text))
|
|
text = text + [0] * (self.max_text_len - len(text))
|
|
data['label'] = np.array(text)
|
|
return data
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = ['blank'] + dict_character
|
|
return dict_character
|
|
|
|
|
|
class E2ELabelEncodeTest(BaseRecLabelEncode):
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
character_type='EN',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(E2ELabelEncodeTest,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def __call__(self, data):
|
|
import json
|
|
padnum = len(self.dict)
|
|
label = data['label']
|
|
label = json.loads(label)
|
|
nBox = len(label)
|
|
boxes, txts, txt_tags = [], [], []
|
|
for bno in range(0, nBox):
|
|
box = label[bno]['points']
|
|
txt = label[bno]['transcription']
|
|
boxes.append(box)
|
|
txts.append(txt)
|
|
if txt in ['*', '###']:
|
|
txt_tags.append(True)
|
|
else:
|
|
txt_tags.append(False)
|
|
boxes = np.array(boxes, dtype=np.float32)
|
|
txt_tags = np.array(txt_tags, dtype=np.bool)
|
|
data['polys'] = boxes
|
|
data['ignore_tags'] = txt_tags
|
|
temp_texts = []
|
|
for text in txts:
|
|
text = text.lower()
|
|
text = self.encode(text)
|
|
if text is None:
|
|
return None
|
|
text = text + [padnum] * (self.max_text_len - len(text)
|
|
) # use 36 to pad
|
|
temp_texts.append(text)
|
|
data['texts'] = np.array(temp_texts)
|
|
return data
|
|
|
|
|
|
class E2ELabelEncodeTrain(object):
|
|
def __init__(self, **kwargs):
|
|
pass
|
|
|
|
def __call__(self, data):
|
|
import json
|
|
label = data['label']
|
|
label = json.loads(label)
|
|
nBox = len(label)
|
|
boxes, txts, txt_tags = [], [], []
|
|
for bno in range(0, nBox):
|
|
box = label[bno]['points']
|
|
txt = label[bno]['transcription']
|
|
boxes.append(box)
|
|
txts.append(txt)
|
|
if txt in ['*', '###']:
|
|
txt_tags.append(True)
|
|
else:
|
|
txt_tags.append(False)
|
|
boxes = np.array(boxes, dtype=np.float32)
|
|
txt_tags = np.array(txt_tags, dtype=np.bool)
|
|
|
|
data['polys'] = boxes
|
|
data['texts'] = txts
|
|
data['ignore_tags'] = txt_tags
|
|
return data
|
|
|
|
|
|
class AttnLabelEncode(BaseRecLabelEncode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(AttnLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def add_special_char(self, dict_character):
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
dict_character = [self.beg_str] + dict_character + [self.end_str]
|
|
return dict_character
|
|
|
|
def __call__(self, data):
|
|
text = data['label']
|
|
text = self.encode(text)
|
|
if text is None:
|
|
return None
|
|
if len(text) >= self.max_text_len:
|
|
return None
|
|
data['length'] = np.array(len(text))
|
|
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
|
|
- len(text) - 2)
|
|
data['label'] = np.array(text)
|
|
return data
|
|
|
|
def get_ignored_tokens(self):
|
|
beg_idx = self.get_beg_end_flag_idx("beg")
|
|
end_idx = self.get_beg_end_flag_idx("end")
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end):
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict[self.end_str])
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
|
|
% beg_or_end
|
|
return idx
|
|
|
|
|
|
class SRNLabelEncode(BaseRecLabelEncode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length=25,
|
|
character_dict_path=None,
|
|
character_type='en',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(SRNLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = dict_character + [self.beg_str, self.end_str]
|
|
return dict_character
|
|
|
|
def __call__(self, data):
|
|
text = data['label']
|
|
text = self.encode(text)
|
|
char_num = len(self.character)
|
|
if text is None:
|
|
return None
|
|
if len(text) > self.max_text_len:
|
|
return None
|
|
data['length'] = np.array(len(text))
|
|
text = text + [char_num - 1] * (self.max_text_len - len(text))
|
|
data['label'] = np.array(text)
|
|
return data
|
|
|
|
def get_ignored_tokens(self):
|
|
beg_idx = self.get_beg_end_flag_idx("beg")
|
|
end_idx = self.get_beg_end_flag_idx("end")
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end):
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict[self.end_str])
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
|
|
% beg_or_end
|
|
return idx
|
|
|
|
class TableLabelEncode(object):
|
|
""" Convert between text-label and text-index """
|
|
def __init__(self,
|
|
max_text_length,
|
|
max_elem_length,
|
|
max_cell_num,
|
|
character_dict_path,
|
|
span_weight = 1.0,
|
|
**kwargs):
|
|
self.max_text_length = max_text_length
|
|
self.max_elem_length = max_elem_length
|
|
self.max_cell_num = max_cell_num
|
|
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
|
|
list_character = self.add_special_char(list_character)
|
|
list_elem = self.add_special_char(list_elem)
|
|
self.dict_character = {}
|
|
for i, char in enumerate(list_character):
|
|
self.dict_character[char] = i
|
|
self.dict_elem = {}
|
|
for i, elem in enumerate(list_elem):
|
|
self.dict_elem[elem] = i
|
|
self.span_weight = span_weight
|
|
|
|
def load_char_elem_dict(self, character_dict_path):
|
|
list_character = []
|
|
list_elem = []
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
substr = lines[0].decode('utf-8').strip("\n").split("\t")
|
|
character_num = int(substr[0])
|
|
elem_num = int(substr[1])
|
|
for cno in range(1, 1+character_num):
|
|
character = lines[cno].decode('utf-8').strip("\n")
|
|
list_character.append(character)
|
|
for eno in range(1+character_num, 1+character_num+elem_num):
|
|
elem = lines[eno].decode('utf-8').strip("\n")
|
|
list_elem.append(elem)
|
|
return list_character, list_elem
|
|
|
|
def add_special_char(self, list_character):
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
list_character = [self.beg_str] + list_character + [self.end_str]
|
|
return list_character
|
|
|
|
def get_span_idx_list(self):
|
|
span_idx_list = []
|
|
for elem in self.dict_elem:
|
|
if 'span' in elem:
|
|
span_idx_list.append(self.dict_elem[elem])
|
|
return span_idx_list
|
|
|
|
def __call__(self, data):
|
|
cells = data['cells']
|
|
structure = data['structure']['tokens']
|
|
structure = self.encode(structure, 'elem')
|
|
if structure is None:
|
|
return None
|
|
elem_num = len(structure)
|
|
structure = [0] + structure + [len(self.dict_elem) - 1]
|
|
structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
|
|
structure = np.array(structure)
|
|
data['structure'] = structure
|
|
elem_char_idx1 = self.dict_elem['<td>']
|
|
elem_char_idx2 = self.dict_elem['<td']
|
|
span_idx_list = self.get_span_idx_list()
|
|
td_idx_list = np.logical_or(structure == elem_char_idx1, structure == elem_char_idx2)
|
|
td_idx_list = np.where(td_idx_list)[0]
|
|
|
|
structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
|
|
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
|
|
bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
|
|
img_height, img_width, img_ch = data['image'].shape
|
|
if len(span_idx_list) > 0:
|
|
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
|
|
span_weight = min(max(span_weight, 1.0), self.span_weight)
|
|
for cno in range(len(cells)):
|
|
if 'bbox' in cells[cno]:
|
|
bbox = cells[cno]['bbox'].copy()
|
|
bbox[0] = bbox[0] * 1.0 / img_width
|
|
bbox[1] = bbox[1] * 1.0 / img_height
|
|
bbox[2] = bbox[2] * 1.0 / img_width
|
|
bbox[3] = bbox[3] * 1.0 / img_height
|
|
td_idx = td_idx_list[cno]
|
|
bbox_list[td_idx] = bbox
|
|
bbox_list_mask[td_idx] = 1.0
|
|
cand_span_idx = td_idx + 1
|
|
if cand_span_idx < (self.max_elem_length + 2):
|
|
if structure[cand_span_idx] in span_idx_list:
|
|
structure_mask[cand_span_idx] = span_weight
|
|
|
|
data['bbox_list'] = bbox_list
|
|
data['bbox_list_mask'] = bbox_list_mask
|
|
data['structure_mask'] = structure_mask
|
|
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
|
|
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
|
|
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
|
|
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
|
|
data['sp_tokens'] = np.array([char_beg_idx, char_end_idx, elem_beg_idx,
|
|
elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length,
|
|
self.max_elem_length, self.max_cell_num, elem_num])
|
|
return data
|
|
|
|
def encode(self, text, char_or_elem):
|
|
"""convert text-label into text-index.
|
|
"""
|
|
if char_or_elem == "char":
|
|
max_len = self.max_text_length
|
|
current_dict = self.dict_character
|
|
else:
|
|
max_len = self.max_elem_length
|
|
current_dict = self.dict_elem
|
|
if len(text) > max_len:
|
|
return None
|
|
if len(text) == 0:
|
|
if char_or_elem == "char":
|
|
return [self.dict_character['space']]
|
|
else:
|
|
return None
|
|
text_list = []
|
|
for char in text:
|
|
if char not in current_dict:
|
|
return None
|
|
text_list.append(current_dict[char])
|
|
if len(text_list) == 0:
|
|
if char_or_elem == "char":
|
|
return [self.dict_character['space']]
|
|
else:
|
|
return None
|
|
return text_list
|
|
|
|
def get_ignored_tokens(self, char_or_elem):
|
|
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
|
|
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
|
|
if char_or_elem == "char":
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict_character[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict_character[self.end_str])
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
|
|
% beg_or_end
|
|
elif char_or_elem == "elem":
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict_elem[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict_elem[self.end_str])
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
|
|
% beg_or_end
|
|
else:
|
|
assert False, "Unsupport type %s in char_or_elem" \
|
|
% char_or_elem
|
|
return idx
|
|
|