PaddleOCR/ppocr/data/imaug/label_ops.py

512 lines
18 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import string
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
self.label_list = label_list
def __call__(self, data):
label = data['label']
if label not in self.label_list:
return None
label = self.label_list.index(label)
data['label'] = label
return data
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False):
support_character_type = [
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type)
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif character_type == "EN_symbol":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
elif character_type in support_character_type:
self.character_str = ""
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type)
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if use_space_char:
self.character_str += " "
dict_character = list(self.character_str)
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
# logger = get_logger()
# logger.warning('{} is not in dict'.format(char))
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(CTCLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN',
use_space_char=False,
**kwargs):
super(E2ELabelEncodeTest,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
import json
padnum = len(self.dict)
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['ignore_tags'] = txt_tags
temp_texts = []
for text in txts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [padnum] * (self.max_text_len - len(text)
) # use 36 to pad
temp_texts.append(text)
data['texts'] = np.array(temp_texts)
return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
class AttnLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(AttnLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text))
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
- len(text) - 2)
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
char_num = len(self.character)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
text = text + [char_num - 1] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class TableLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
span_weight = 1.0,
**kwargs):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
for i, char in enumerate(list_character):
self.dict_character[char] = i
self.dict_elem = {}
for i, elem in enumerate(list_elem):
self.dict_elem[elem] = i
self.span_weight = span_weight
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1+character_num):
character = lines[cno].decode('utf-8').strip("\n")
list_character.append(character)
for eno in range(1+character_num, 1+character_num+elem_num):
elem = lines[eno].decode('utf-8').strip("\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_span_idx_list(self):
span_idx_list = []
for elem in self.dict_elem:
if 'span' in elem:
span_idx_list.append(self.dict_elem[elem])
return span_idx_list
def __call__(self, data):
cells = data['cells']
structure = data['structure']['tokens']
structure = self.encode(structure, 'elem')
if structure is None:
return None
elem_num = len(structure)
structure = [0] + structure + [len(self.dict_elem) - 1]
structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
structure = np.array(structure)
data['structure'] = structure
elem_char_idx1 = self.dict_elem['<td>']
elem_char_idx2 = self.dict_elem['<td']
span_idx_list = self.get_span_idx_list()
td_idx_list = np.logical_or(structure == elem_char_idx1, structure == elem_char_idx2)
td_idx_list = np.where(td_idx_list)[0]
structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
img_height, img_width, img_ch = data['image'].shape
if len(span_idx_list) > 0:
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
span_weight = min(max(span_weight, 1.0), self.span_weight)
for cno in range(len(cells)):
if 'bbox' in cells[cno]:
bbox = cells[cno]['bbox'].copy()
bbox[0] = bbox[0] * 1.0 / img_width
bbox[1] = bbox[1] * 1.0 / img_height
bbox[2] = bbox[2] * 1.0 / img_width
bbox[3] = bbox[3] * 1.0 / img_height
td_idx = td_idx_list[cno]
bbox_list[td_idx] = bbox
bbox_list_mask[td_idx] = 1.0
cand_span_idx = td_idx + 1
if cand_span_idx < (self.max_elem_length + 2):
if structure[cand_span_idx] in span_idx_list:
structure_mask[cand_span_idx] = span_weight
data['bbox_list'] = bbox_list
data['bbox_list_mask'] = bbox_list_mask
data['structure_mask'] = structure_mask
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
data['sp_tokens'] = np.array([char_beg_idx, char_end_idx, elem_beg_idx,
elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length,
self.max_elem_length, self.max_cell_num, elem_num])
return data
def encode(self, text, char_or_elem):
"""convert text-label into text-index.
"""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_character
else:
max_len = self.max_elem_length
current_dict = self.dict_elem
if len(text) > max_len:
return None
if len(text) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
text_list = []
for char in text:
if char not in current_dict:
return None
text_list.append(current_dict[char])
if len(text_list) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
return text_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = np.array(self.dict_character[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_character[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
% beg_or_end
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = np.array(self.dict_elem[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_elem[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
% beg_or_end
else:
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx