PaddleOCR/deploy/pdserving/clas_rpc_server.py

135 lines
4.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
from tools.infer.predict_cls import TextClassifier
from params import read_params
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:
from paddle_serving_server.web_service import WebService
class TextClassifierHelper(TextClassifier):
def __init__(self, args):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.rec_batch_num
self.label_list = args.label_list
self.cls_thresh = args.cls_thresh
self.fetch = [
"save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"
]
def preprocess(self, img_list):
args = {}
img_num = len(img_list)
args["img_list"] = img_list
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the cls process
indices = np.argsort(np.array(width_list))
args["indices"] = indices
cls_res = [['', 0.0]] * img_num
batch_num = self.cls_batch_num
predict_time = 0
beg_img_no, end_img_no = 0, img_num
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
if img_num > 1:
feed = [{
"image": norm_img_batch[x]
} for x in range(norm_img_batch.shape[0])]
else:
feed = {"image": norm_img_batch[0]}
return feed, self.fetch, args
def postprocess(self, outputs, args):
prob_out = outputs[0]
label_out = outputs[1]
indices = args["indices"]
cls_res = [['', 0.0]] * len(label_out)
if len(label_out.shape) != 1:
prob_out, label_out = label_out, prob_out
for rno in range(len(label_out)):
label_idx = label_out[rno]
score = prob_out[rno][label_idx]
label = self.label_list[label_idx]
cls_res[indices[rno]] = [label, score]
if '180' in label and score > self.cls_thresh:
img_list[indices[rno]] = cv2.rotate(img_list[indices[rno]], 1)
return args["img_list"], cls_res
class OCRService(WebService):
def init_rec(self):
self.ocr_reader = OCRReader()
self.text_classifier = TextClassifierHelper(global_args)
def preprocess(self, feed=[], fetch=[]):
# TODO: to handle batch rec images
img_list = []
for feed_data in feed:
data = base64.b64decode(feed_data["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img_list.append(im)
feed, fetch, self.tmp_args = self.text_classifier.preprocess(img_list)
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
outputs = [fetch_map[x] for x in self.text_classifier.fetch]
for x in fetch_map.keys():
if ".lod" in x:
self.tmp_args[x] = fetch_map[x]
_, rec_res = self.text_classifier.postprocess(outputs, self.tmp_args)
res = {
"direction": [x[0] for x in rec_res],
"score": [str(x[1]) for x in rec_res]
}
return res
if __name__ == "__main__":
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config(global_args.cls_model_dir)
ocr_service.init_rec()
if global_args.use_gpu:
ocr_service.prepare_server(
workdir="workdir", port=9292, device="gpu", gpuid=0)
else:
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
ocr_service.run_rpc_service()
ocr_service.run_web_service()