PaddleOCR/doc/doc_ch/angle_class.md

5.4 KiB
Raw Blame History

文本方向分类器

1. 方法介绍

文本方向分类器主要用于图片非0度的场景下在这种场景下需要对图片里检测到的文本行进行一个转正的操作。在PaddleOCR系统内 文字检测之后得到的文本行图片经过仿射变换之后送入识别模型此时只需要对文字进行一个0和180度的角度分类因此PaddleOCR内置的 文本方向分类器只支持了0和180度的分类。如果想支持更多角度,可以自己修改算法进行支持。

0和180度数据样本例子

2. 数据准备

请按如下步骤设置数据集:

训练数据的默认存储路径是 PaddleOCR/train_data/cls,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:

ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset

请参考下文组织您的数据。

  • 训练集

首先建议将训练图片放入同一个文件夹并用一个txt文件cls_gt_train.txt记录图片路径和标签。

注意: 默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错

0和180分别表示图片的角度为0度和180度

" 图像文件名                 图像标注信息 "
train/cls/train/word_001.jpg   0
train/cls/train/word_002.jpg   180

最终训练集应有如下文件结构:

|-train_data
    |-cls
        |- cls_gt_train.txt
        |- train
            |- word_001.png
            |- word_002.jpg
            |- word_003.jpg
            | ...
  • 测试集

同训练集类似测试集也需要提供一个包含所有图片的文件夹test和一个cls_gt_test.txt测试集的结构如下所示

|-train_data
    |-cls
        |- cls_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...

3. 启动训练

将准备好的txt文件和图片文件夹路径分别写入配置文件的 Train/Eval.dataset.label_file_listTrain/Eval.dataset.data_dir 字段下,Train/Eval.dataset.data_dir字段下的路径和文件里记载的图片名构成了图片的绝对路径。

PaddleOCR提供了训练脚本、评估脚本和预测脚本。

开始训练:

如果您安装的是cpu版本请将配置文件中的 use_gpu 字段修改为false

# GPU训练 支持单卡,多卡训练,通过 '--gpus' 指定卡号。
# 启动训练下面的命令已经写入train.sh文件中只需修改文件里的配置文件路径即可
python3 -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7'  tools/train.py -c configs/cls/cls_mv3.yml
  • 数据增强

PaddleOCR提供了多种数据增强方式如果您希望在训练时加入扰动请在配置文件中取消Train.dataset.transforms下的RecAugRandAugment字段的注释。

默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse),随机数据增强(RandAugment)。

训练过程中除随机数据增强外每种扰动方式以50%的概率被选择,具体代码实现请参考: rec_img_aug.py randaugment.py

由于OpenCV的兼容性问题扰动操作暂时只支持linux

4. 训练

PaddleOCR支持训练和评估交替进行, 可以在 configs/cls/cls_mv3.yml 中修改 eval_batch_step 设置评估频率默认每1000个iter评估一次。训练过程中将会保存如下内容

├── best_accuracy.pdopt # 最佳模型的优化器参数
├── best_accuracy.pdparams # 最佳模型的参数
├── best_accuracy.states # 最佳模型的指标和epoch等信息
├── config.yml # 本次实验的配置文件
├── latest.pdopt # 最新模型的优化器参数
├── latest.pdparams # 最新模型的参数
├── latest.states # 最新模型的指标和epoch等信息
└── train.log # 训练日志

如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。

注意,预测/评估时的配置文件请务必与训练一致。

5. 评估

评估数据集可以通过修改configs/cls/cls_mv3.yml文件里的Eval.dataset.label_file_list 字段设置。

export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy

6. 预测

  • 训练引擎的预测

使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。

通过 Global.infer_img 指定预测图片或文件夹路径,通过 Global.checkpoints 指定权重:

# 预测分类结果
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg

预测图片:

得到输入图像的预测结果:

infer_img: doc/imgs_words/ch/word_1.jpg
     result: ('0', 0.9998784)