9.5 KiB
PaddleOCR快速开始
1. 安装PaddleOCR whl包
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
-
对于Windows环境用户:
直接通过pip安装的shapely库可能出现
[winRrror 126] 找不到指定模块的问题
。建议从这里下载shapely安装包完成安装, -
使用版面分析功能时,运行以下命令安装 Layout-Parser
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
2. 便捷使用
2.1 命令行使用
PaddleOCR提供了一系列测试图片,点击这里下载并解压,然后在终端中切换到相应目录
cd /path/to/ppocr_img
如果不使用提供的测试图片,可以将下方--image_dir
参数替换为相应的测试图片路径
2.1.1 中英文模型
-
检测+方向分类器+识别全流程:
--use_angle_cls true
设置使用方向分类器识别180度旋转文字,--use_gpu false
设置不使用GPUpaddleocr --image_dir ./imgs/11.jpg --use_angle_cls true --use_gpu false
结果是一个list,每个item包含了文本框,文字和识别置信度
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]] [[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]] [[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]] ......
-
单独使用检测:设置
--rec
为false
paddleocr --image_dir ./imgs/11.jpg --rec false
结果是一个list,每个item只包含文本框
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]] [[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]] [[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]] ......
-
单独使用识别:设置
--det
为false
paddleocr --image_dir ./imgs_words/ch/word_1.jpg --det false
结果是一个list,每个item只包含识别结果和识别置信度
['韩国小馆', 0.9907421]
如需使用2.0模型,请指定参数--version PP-OCR
,paddleocr默认使用2.1模型(--versioin PP-OCRv2
)。更多whl包使用可参考whl包文档
2.1.2 多语言模型
Paddleocr目前支持80个语种,可以通过修改--lang
参数进行切换,对于英文模型,指定--lang=en
。
paddleocr --image_dir ./imgs_en/254.jpg --lang=en
结果是一个list,每个item包含了文本框,文字和识别置信度
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
常用的多语言简写包括
语种 | 缩写 | 语种 | 缩写 | 语种 | 缩写 | ||
---|---|---|---|---|---|---|---|
中文 | ch | 法文 | fr | 日文 | japan | ||
英文 | en | 德文 | german | 韩文 | korean | ||
繁体中文 | chinese_cht | 意大利文 | it | 俄罗斯文 | ru |
全部语种及其对应的缩写列表可查看多语言模型教程
2.1.3 版面分析
版面分析是指对文档图片中的文字、标题、列表、图片和表格5类区域进行划分。对于前三类区域,直接使用OCR模型完成对应区域文字检测与识别,并将结果保存在txt中。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。图片区域会被单独裁剪成图像。
使用PaddleOCR的版面分析功能,需要指定--type=structure
paddleocr --image_dir=./table/1.png --type=structure
-
返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
[{ 'type': 'Text', 'bbox': [34, 432, 345, 462], 'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]], [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)]) } ]
其中各个字段说明如下
字段 说明 type 图片区域的类型 bbox 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] res 图片区域的OCR或表格识别结果。
表格: 表格的HTML字符串;
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组运行完成后,每张图片会在
output
字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。/output/table/1/ └─ res.txt └─ [454, 360, 824, 658].xlsx 表格识别结果 └─ [16, 2, 828, 305].jpg 被裁剪出的图片区域 └─ [17, 361, 404, 711].xlsx 表格识别结果
-
参数说明
字段 说明 默认值 output excel和识别结果保存的地址 ./output/table table_max_len 表格结构模型预测时,图像的长边resize尺度 488 table_model_dir 表格结构模型 inference 模型地址 None table_char_type 表格结构模型所用字典地址 ../ppocr/utils/dict/table_structure_dict.txt 大部分参数和paddleocr whl包保持一致,见 whl包文档
2.2 Python脚本使用
2.2.1 中英文与多语言使用
通过Python脚本使用PaddleOCR whl包,whl包会自动下载ppocr轻量级模型作为默认模型。
- 检测+方向分类器+识别全流程
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
结果是一个list,每个item包含了文本框,文字和识别置信度
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
结果可视化
2.2.2 版面分析
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output/table'
img_path = './table/paper-image.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = './fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')