93 lines
3.3 KiB
Python
93 lines
3.3 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from paddle import nn
|
|
from ppocr.modeling.transforms import build_transform
|
|
from ppocr.modeling.backbones import build_backbone
|
|
from ppocr.modeling.necks import build_neck
|
|
from ppocr.modeling.heads import build_head
|
|
|
|
__all__ = ['BaseModel']
|
|
|
|
|
|
class BaseModel(nn.Layer):
|
|
def __init__(self, config):
|
|
"""
|
|
the module for OCR.
|
|
args:
|
|
config (dict): the super parameters for module.
|
|
"""
|
|
super(BaseModel, self).__init__()
|
|
in_channels = config.get('in_channels', 3)
|
|
model_type = config['model_type']
|
|
# build transfrom,
|
|
# for rec, transfrom can be TPS,None
|
|
# for det and cls, transfrom shoule to be None,
|
|
# if you make model differently, you can use transfrom in det and cls
|
|
if 'Transform' not in config or config['Transform'] is None:
|
|
self.use_transform = False
|
|
else:
|
|
self.use_transform = True
|
|
config['Transform']['in_channels'] = in_channels
|
|
self.transform = build_transform(config['Transform'])
|
|
in_channels = self.transform.out_channels
|
|
|
|
# build backbone, backbone is need for del, rec and cls
|
|
config["Backbone"]['in_channels'] = in_channels
|
|
self.backbone = build_backbone(config["Backbone"], model_type)
|
|
in_channels = self.backbone.out_channels
|
|
|
|
# build neck
|
|
# for rec, neck can be cnn,rnn or reshape(None)
|
|
# for det, neck can be FPN, BIFPN and so on.
|
|
# for cls, neck should be none
|
|
if 'Neck' not in config or config['Neck'] is None:
|
|
self.use_neck = False
|
|
else:
|
|
self.use_neck = True
|
|
config['Neck']['in_channels'] = in_channels
|
|
self.neck = build_neck(config['Neck'])
|
|
in_channels = self.neck.out_channels
|
|
|
|
# # build head, head is need for det, rec and cls
|
|
config["Head"]['in_channels'] = in_channels
|
|
self.head = build_head(config["Head"])
|
|
|
|
self.return_all_feats = config.get("return_all_feats", False)
|
|
|
|
def forward(self, x, data=None, mode='Train'):
|
|
y = dict()
|
|
if self.use_transform:
|
|
x = self.transform(x)
|
|
x = self.backbone(x)
|
|
y["backbone_out"] = x
|
|
if self.use_neck:
|
|
x = self.neck(x)
|
|
y["neck_out"] = x
|
|
if data is None:
|
|
x = self.head(x)
|
|
else:
|
|
if mode == 'Eval' or mode == 'Test':
|
|
x = self.head(x, targets=data, mode=mode)
|
|
else:
|
|
x = self.head(x, targets=data)
|
|
y["head_out"] = x
|
|
if self.return_all_feats:
|
|
return y
|
|
else:
|
|
return x
|