475 lines
18 KiB
Python
475 lines
18 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import string
|
|
import paddle
|
|
from paddle.nn import functional as F
|
|
|
|
|
|
class BaseRecLabelDecode(object):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False):
|
|
support_character_type = [
|
|
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
|
|
'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
|
|
'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
|
|
'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
|
|
]
|
|
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
|
|
support_character_type, character_type)
|
|
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
|
|
if character_type == "en":
|
|
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
dict_character = list(self.character_str)
|
|
elif character_type == "EN_symbol":
|
|
# same with ASTER setting (use 94 char).
|
|
self.character_str = string.printable[:-6]
|
|
dict_character = list(self.character_str)
|
|
elif character_type in support_character_type:
|
|
self.character_str = []
|
|
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
|
|
character_type)
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
|
self.character_str.append(line)
|
|
if use_space_char:
|
|
self.character_str.append(" ")
|
|
dict_character = list(self.character_str)
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
self.character_type = character_type
|
|
dict_character = self.add_special_char(dict_character)
|
|
self.dict = {}
|
|
for i, char in enumerate(dict_character):
|
|
self.dict[char] = i
|
|
self.character = dict_character
|
|
|
|
def add_special_char(self, dict_character):
|
|
return dict_character
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
char_list = []
|
|
conf_list = []
|
|
for idx in range(len(text_index[batch_idx])):
|
|
if text_index[batch_idx][idx] in ignored_tokens:
|
|
continue
|
|
if is_remove_duplicate:
|
|
# only for predict
|
|
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
|
batch_idx][idx]:
|
|
continue
|
|
char_list.append(self.character[int(text_index[batch_idx][
|
|
idx])])
|
|
if text_prob is not None:
|
|
conf_list.append(text_prob[batch_idx][idx])
|
|
else:
|
|
conf_list.append(1)
|
|
text = ''.join(char_list)
|
|
result_list.append((text, np.mean(conf_list)))
|
|
return result_list
|
|
|
|
def get_ignored_tokens(self):
|
|
return [0] # for ctc blank
|
|
|
|
|
|
class CTCLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(CTCLabelDecode, self).__init__(character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
if isinstance(preds, paddle.Tensor):
|
|
preds = preds.numpy()
|
|
preds_idx = preds.argmax(axis=2)
|
|
preds_prob = preds.max(axis=2)
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
|
if label is None:
|
|
return text
|
|
label = self.decode(label)
|
|
return text, label
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = ['blank'] + dict_character
|
|
return dict_character
|
|
|
|
|
|
class DistillationCTCLabelDecode(CTCLabelDecode):
|
|
"""
|
|
Convert
|
|
Convert between text-label and text-index
|
|
"""
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False,
|
|
model_name=["student"],
|
|
key=None,
|
|
**kwargs):
|
|
super(DistillationCTCLabelDecode, self).__init__(
|
|
character_dict_path, character_type, use_space_char)
|
|
if not isinstance(model_name, list):
|
|
model_name = [model_name]
|
|
self.model_name = model_name
|
|
|
|
self.key = key
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
output = dict()
|
|
for name in self.model_name:
|
|
pred = preds[name]
|
|
if self.key is not None:
|
|
pred = pred[self.key]
|
|
output[name] = super().__call__(pred, label=label, *args, **kwargs)
|
|
return output
|
|
|
|
|
|
class AttnLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
character_type='ch',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(AttnLabelDecode, self).__init__(character_dict_path,
|
|
character_type, use_space_char)
|
|
|
|
def add_special_char(self, dict_character):
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
dict_character = dict_character
|
|
dict_character = [self.beg_str] + dict_character + [self.end_str]
|
|
return dict_character
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
[beg_idx, end_idx] = self.get_ignored_tokens()
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
char_list = []
|
|
conf_list = []
|
|
for idx in range(len(text_index[batch_idx])):
|
|
if text_index[batch_idx][idx] in ignored_tokens:
|
|
continue
|
|
if int(text_index[batch_idx][idx]) == int(end_idx):
|
|
break
|
|
if is_remove_duplicate:
|
|
# only for predict
|
|
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
|
batch_idx][idx]:
|
|
continue
|
|
char_list.append(self.character[int(text_index[batch_idx][
|
|
idx])])
|
|
if text_prob is not None:
|
|
conf_list.append(text_prob[batch_idx][idx])
|
|
else:
|
|
conf_list.append(1)
|
|
text = ''.join(char_list)
|
|
result_list.append((text, np.mean(conf_list)))
|
|
return result_list
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
"""
|
|
text = self.decode(text)
|
|
if label is None:
|
|
return text
|
|
else:
|
|
label = self.decode(label, is_remove_duplicate=False)
|
|
return text, label
|
|
"""
|
|
if isinstance(preds, paddle.Tensor):
|
|
preds = preds.numpy()
|
|
|
|
preds_idx = preds.argmax(axis=2)
|
|
preds_prob = preds.max(axis=2)
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
|
if label is None:
|
|
return text
|
|
label = self.decode(label, is_remove_duplicate=False)
|
|
return text, label
|
|
|
|
def get_ignored_tokens(self):
|
|
beg_idx = self.get_beg_end_flag_idx("beg")
|
|
end_idx = self.get_beg_end_flag_idx("end")
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end):
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict[self.end_str])
|
|
else:
|
|
assert False, "unsupport type %s in get_beg_end_flag_idx" \
|
|
% beg_or_end
|
|
return idx
|
|
|
|
|
|
class SRNLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
character_type='en',
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(SRNLabelDecode, self).__init__(character_dict_path,
|
|
character_type, use_space_char)
|
|
self.max_text_length = kwargs.get('max_text_length', 25)
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
pred = preds['predict']
|
|
char_num = len(self.character_str) + 2
|
|
if isinstance(pred, paddle.Tensor):
|
|
pred = pred.numpy()
|
|
pred = np.reshape(pred, [-1, char_num])
|
|
|
|
preds_idx = np.argmax(pred, axis=1)
|
|
preds_prob = np.max(pred, axis=1)
|
|
|
|
preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
|
|
|
|
preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
|
|
|
|
text = self.decode(preds_idx, preds_prob)
|
|
|
|
if label is None:
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
|
return text
|
|
label = self.decode(label)
|
|
return text, label
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
batch_size = len(text_index)
|
|
|
|
for batch_idx in range(batch_size):
|
|
char_list = []
|
|
conf_list = []
|
|
for idx in range(len(text_index[batch_idx])):
|
|
if text_index[batch_idx][idx] in ignored_tokens:
|
|
continue
|
|
if is_remove_duplicate:
|
|
# only for predict
|
|
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
|
batch_idx][idx]:
|
|
continue
|
|
char_list.append(self.character[int(text_index[batch_idx][
|
|
idx])])
|
|
if text_prob is not None:
|
|
conf_list.append(text_prob[batch_idx][idx])
|
|
else:
|
|
conf_list.append(1)
|
|
|
|
text = ''.join(char_list)
|
|
result_list.append((text, np.mean(conf_list)))
|
|
return result_list
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = dict_character + [self.beg_str, self.end_str]
|
|
return dict_character
|
|
|
|
def get_ignored_tokens(self):
|
|
beg_idx = self.get_beg_end_flag_idx("beg")
|
|
end_idx = self.get_beg_end_flag_idx("end")
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end):
|
|
if beg_or_end == "beg":
|
|
idx = np.array(self.dict[self.beg_str])
|
|
elif beg_or_end == "end":
|
|
idx = np.array(self.dict[self.end_str])
|
|
else:
|
|
assert False, "unsupport type %s in get_beg_end_flag_idx" \
|
|
% beg_or_end
|
|
return idx
|
|
|
|
|
|
class TableLabelDecode(object):
|
|
""" """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
max_elem_length,
|
|
max_cell_num,
|
|
character_dict_path,
|
|
**kwargs):
|
|
self.max_text_length = max_text_length
|
|
self.max_elem_length = max_elem_length
|
|
self.max_cell_num = max_cell_num
|
|
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
|
|
list_character = self.add_special_char(list_character)
|
|
list_elem = self.add_special_char(list_elem)
|
|
self.dict_character = {}
|
|
self.dict_idx_character = {}
|
|
for i, char in enumerate(list_character):
|
|
self.dict_idx_character[i] = char
|
|
self.dict_character[char] = i
|
|
self.dict_elem = {}
|
|
self.dict_idx_elem = {}
|
|
for i, elem in enumerate(list_elem):
|
|
self.dict_idx_elem[i] = elem
|
|
self.dict_elem[elem] = i
|
|
|
|
def load_char_elem_dict(self, character_dict_path):
|
|
list_character = []
|
|
list_elem = []
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
substr = lines[0].decode('utf-8').strip("\n").split("\t")
|
|
character_num = int(substr[0])
|
|
elem_num = int(substr[1])
|
|
for cno in range(1, 1 + character_num):
|
|
character = lines[cno].decode('utf-8').strip("\n")
|
|
list_character.append(character)
|
|
for eno in range(1 + character_num, 1 + character_num + elem_num):
|
|
elem = lines[eno].decode('utf-8').strip("\n")
|
|
list_elem.append(elem)
|
|
return list_character, list_elem
|
|
|
|
def add_special_char(self, list_character):
|
|
self.beg_str = "sos"
|
|
self.end_str = "eos"
|
|
list_character = [self.beg_str] + list_character + [self.end_str]
|
|
return list_character
|
|
|
|
def get_sp_tokens(self):
|
|
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
|
|
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
|
|
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
|
|
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
|
|
elem_char_idx1 = self.dict_elem['<td>']
|
|
elem_char_idx2 = self.dict_elem['<td']
|
|
sp_tokens = np.array([char_beg_idx, char_end_idx, elem_beg_idx,
|
|
elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length,
|
|
self.max_elem_length, self.max_cell_num])
|
|
return sp_tokens
|
|
|
|
def __call__(self, preds):
|
|
structure_probs = preds['structure_probs']
|
|
loc_preds = preds['loc_preds']
|
|
if isinstance(structure_probs,paddle.Tensor):
|
|
structure_probs = structure_probs.numpy()
|
|
if isinstance(loc_preds,paddle.Tensor):
|
|
loc_preds = loc_preds.numpy()
|
|
structure_idx = structure_probs.argmax(axis=2)
|
|
structure_probs = structure_probs.max(axis=2)
|
|
structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(structure_idx,
|
|
structure_probs, 'elem')
|
|
res_html_code_list = []
|
|
res_loc_list = []
|
|
batch_num = len(structure_str)
|
|
for bno in range(batch_num):
|
|
res_loc = []
|
|
for sno in range(len(structure_str[bno])):
|
|
text = structure_str[bno][sno]
|
|
if text in ['<td>', '<td']:
|
|
pos = structure_pos[bno][sno]
|
|
res_loc.append(loc_preds[bno, pos])
|
|
res_html_code = ''.join(structure_str[bno])
|
|
res_loc = np.array(res_loc)
|
|
res_html_code_list.append(res_html_code)
|
|
res_loc_list.append(res_loc)
|
|
return {'res_html_code': res_html_code_list, 'res_loc': res_loc_list, 'res_score_list': result_score_list,
|
|
'res_elem_idx_list': result_elem_idx_list,'structure_str_list':structure_str}
|
|
|
|
def decode(self, text_index, structure_probs, char_or_elem):
|
|
"""convert text-label into text-index.
|
|
"""
|
|
if char_or_elem == "char":
|
|
current_dict = self.dict_idx_character
|
|
else:
|
|
current_dict = self.dict_idx_elem
|
|
ignored_tokens = self.get_ignored_tokens('elem')
|
|
beg_idx, end_idx = ignored_tokens
|
|
|
|
result_list = []
|
|
result_pos_list = []
|
|
result_score_list = []
|
|
result_elem_idx_list = []
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
char_list = []
|
|
elem_pos_list = []
|
|
elem_idx_list = []
|
|
score_list = []
|
|
for idx in range(len(text_index[batch_idx])):
|
|
tmp_elem_idx = int(text_index[batch_idx][idx])
|
|
if idx > 0 and tmp_elem_idx == end_idx:
|
|
break
|
|
if tmp_elem_idx in ignored_tokens:
|
|
continue
|
|
|
|
char_list.append(current_dict[tmp_elem_idx])
|
|
elem_pos_list.append(idx)
|
|
score_list.append(structure_probs[batch_idx, idx])
|
|
elem_idx_list.append(tmp_elem_idx)
|
|
result_list.append(char_list)
|
|
result_pos_list.append(elem_pos_list)
|
|
result_score_list.append(score_list)
|
|
result_elem_idx_list.append(elem_idx_list)
|
|
return result_list, result_pos_list, result_score_list, result_elem_idx_list
|
|
|
|
def get_ignored_tokens(self, char_or_elem):
|
|
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
|
|
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
|
|
return [beg_idx, end_idx]
|
|
|
|
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
|
|
if char_or_elem == "char":
|
|
if beg_or_end == "beg":
|
|
idx = self.dict_character[self.beg_str]
|
|
elif beg_or_end == "end":
|
|
idx = self.dict_character[self.end_str]
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
|
|
% beg_or_end
|
|
elif char_or_elem == "elem":
|
|
if beg_or_end == "beg":
|
|
idx = self.dict_elem[self.beg_str]
|
|
elif beg_or_end == "end":
|
|
idx = self.dict_elem[self.end_str]
|
|
else:
|
|
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
|
|
% beg_or_end
|
|
else:
|
|
assert False, "Unsupport type %s in char_or_elem" \
|
|
% char_or_elem
|
|
return idx
|