163 lines
6.2 KiB
Python
163 lines
6.2 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
import paddle
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(__file__)
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.join(__dir__, '..'))
|
|
from extract_textpoint_slow import *
|
|
from extract_textpoint_fast import generate_pivot_list_fast, restore_poly
|
|
|
|
|
|
class PGNet_PostProcess(object):
|
|
# two different post-process
|
|
def __init__(self, character_dict_path, valid_set, score_thresh, outs_dict,
|
|
shape_list):
|
|
self.Lexicon_Table = get_dict(character_dict_path)
|
|
self.valid_set = valid_set
|
|
self.score_thresh = score_thresh
|
|
self.outs_dict = outs_dict
|
|
self.shape_list = shape_list
|
|
|
|
def pg_postprocess_fast(self):
|
|
p_score = self.outs_dict['f_score']
|
|
p_border = self.outs_dict['f_border']
|
|
p_char = self.outs_dict['f_char']
|
|
p_direction = self.outs_dict['f_direction']
|
|
if isinstance(p_score, paddle.Tensor):
|
|
p_score = p_score[0].numpy()
|
|
p_border = p_border[0].numpy()
|
|
p_direction = p_direction[0].numpy()
|
|
p_char = p_char[0].numpy()
|
|
else:
|
|
p_score = p_score[0]
|
|
p_border = p_border[0]
|
|
p_direction = p_direction[0]
|
|
p_char = p_char[0]
|
|
|
|
src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
|
|
instance_yxs_list, seq_strs = generate_pivot_list_fast(
|
|
p_score,
|
|
p_char,
|
|
p_direction,
|
|
self.Lexicon_Table,
|
|
score_thresh=self.score_thresh)
|
|
poly_list, keep_str_list = restore_poly(instance_yxs_list, seq_strs,
|
|
p_border, ratio_w, ratio_h,
|
|
src_w, src_h, self.valid_set)
|
|
data = {
|
|
'points': poly_list,
|
|
'texts': keep_str_list,
|
|
}
|
|
return data
|
|
|
|
def pg_postprocess_slow(self):
|
|
p_score = self.outs_dict['f_score']
|
|
p_border = self.outs_dict['f_border']
|
|
p_char = self.outs_dict['f_char']
|
|
p_direction = self.outs_dict['f_direction']
|
|
if isinstance(p_score, paddle.Tensor):
|
|
p_score = p_score[0].numpy()
|
|
p_border = p_border[0].numpy()
|
|
p_direction = p_direction[0].numpy()
|
|
p_char = p_char[0].numpy()
|
|
else:
|
|
p_score = p_score[0]
|
|
p_border = p_border[0]
|
|
p_direction = p_direction[0]
|
|
p_char = p_char[0]
|
|
src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
|
|
is_curved = self.valid_set == "totaltext"
|
|
char_seq_idx_set, instance_yxs_list = generate_pivot_list_slow(
|
|
p_score,
|
|
p_char,
|
|
p_direction,
|
|
score_thresh=self.score_thresh,
|
|
is_backbone=True,
|
|
is_curved=is_curved)
|
|
seq_strs = []
|
|
for char_idx_set in char_seq_idx_set:
|
|
pr_str = ''.join([self.Lexicon_Table[pos] for pos in char_idx_set])
|
|
seq_strs.append(pr_str)
|
|
poly_list = []
|
|
keep_str_list = []
|
|
all_point_list = []
|
|
all_point_pair_list = []
|
|
for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
|
|
if len(yx_center_line) == 1:
|
|
yx_center_line.append(yx_center_line[-1])
|
|
|
|
offset_expand = 1.0
|
|
if self.valid_set == 'totaltext':
|
|
offset_expand = 1.2
|
|
|
|
point_pair_list = []
|
|
for batch_id, y, x in yx_center_line:
|
|
offset = p_border[:, y, x].reshape(2, 2)
|
|
if offset_expand != 1.0:
|
|
offset_length = np.linalg.norm(
|
|
offset, axis=1, keepdims=True)
|
|
expand_length = np.clip(
|
|
offset_length * (offset_expand - 1),
|
|
a_min=0.5,
|
|
a_max=3.0)
|
|
offset_detal = offset / offset_length * expand_length
|
|
offset = offset + offset_detal
|
|
ori_yx = np.array([y, x], dtype=np.float32)
|
|
point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
|
|
[ratio_w, ratio_h]).reshape(-1, 2)
|
|
point_pair_list.append(point_pair)
|
|
|
|
all_point_list.append([
|
|
int(round(x * 4.0 / ratio_w)),
|
|
int(round(y * 4.0 / ratio_h))
|
|
])
|
|
all_point_pair_list.append(point_pair.round().astype(np.int32)
|
|
.tolist())
|
|
|
|
detected_poly, pair_length_info = point_pair2poly(point_pair_list)
|
|
detected_poly = expand_poly_along_width(
|
|
detected_poly, shrink_ratio_of_width=0.2)
|
|
detected_poly[:, 0] = np.clip(
|
|
detected_poly[:, 0], a_min=0, a_max=src_w)
|
|
detected_poly[:, 1] = np.clip(
|
|
detected_poly[:, 1], a_min=0, a_max=src_h)
|
|
|
|
if len(keep_str) < 2:
|
|
continue
|
|
|
|
keep_str_list.append(keep_str)
|
|
detected_poly = np.round(detected_poly).astype('int32')
|
|
if self.valid_set == 'partvgg':
|
|
middle_point = len(detected_poly) // 2
|
|
detected_poly = detected_poly[
|
|
[0, middle_point - 1, middle_point, -1], :]
|
|
poly_list.append(detected_poly)
|
|
elif self.valid_set == 'totaltext':
|
|
poly_list.append(detected_poly)
|
|
else:
|
|
print('--> Not supported format.')
|
|
exit(-1)
|
|
data = {
|
|
'points': poly_list,
|
|
'texts': keep_str_list,
|
|
}
|
|
return data
|