126 lines
4.3 KiB
Python
126 lines
4.3 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(__file__)
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
|
|
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))
|
|
|
|
import paddle
|
|
from ppocr.data import build_dataloader
|
|
from ppocr.modeling.architectures import build_model
|
|
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.metrics import build_metric
|
|
from ppocr.utils.save_load import init_model
|
|
import tools.program as program
|
|
|
|
|
|
def main(config, device, logger, vdl_writer):
|
|
|
|
global_config = config['Global']
|
|
|
|
# build dataloader
|
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
|
|
|
# build post process
|
|
post_process_class = build_post_process(config['PostProcess'],
|
|
global_config)
|
|
|
|
# build model
|
|
# for rec algorithm
|
|
if hasattr(post_process_class, 'character'):
|
|
char_num = len(getattr(post_process_class, 'character'))
|
|
config['Architecture']["Head"]['out_channels'] = char_num
|
|
model = build_model(config['Architecture'])
|
|
|
|
flops = paddle.flops(model, [1, 3, 640, 640])
|
|
logger.info(f"FLOPs before pruning: {flops}")
|
|
|
|
from paddleslim.dygraph import FPGMFilterPruner
|
|
model.train()
|
|
pruner = FPGMFilterPruner(model, [1, 3, 640, 640])
|
|
|
|
# build metric
|
|
eval_class = build_metric(config['Metric'])
|
|
|
|
def eval_fn():
|
|
metric = program.eval(model, valid_dataloader, post_process_class,
|
|
eval_class)
|
|
logger.info(f"metric['hmean']: {metric['hmean']}")
|
|
return metric['hmean']
|
|
|
|
params_sensitive = pruner.sensitive(
|
|
eval_func=eval_fn,
|
|
sen_file="./sen.pickle",
|
|
skip_vars=[
|
|
"conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
|
|
])
|
|
|
|
logger.info(
|
|
"The sensitivity analysis results of model parameters saved in sen.pickle"
|
|
)
|
|
# calculate pruned params's ratio
|
|
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
|
|
for key in params_sensitive.keys():
|
|
logger.info(f"{key}, {params_sensitive[key]}")
|
|
|
|
plan = pruner.prune_vars(params_sensitive, [0])
|
|
|
|
flops = paddle.flops(model, [1, 3, 640, 640])
|
|
logger.info(f"FLOPs after pruning: {flops}")
|
|
|
|
# load pretrain model
|
|
pre_best_model_dict = init_model(config, model, logger, None)
|
|
metric = program.eval(model, valid_dataloader, post_process_class,
|
|
eval_class)
|
|
logger.info(f"metric['hmean']: {metric['hmean']}")
|
|
|
|
# start export model
|
|
from paddle.jit import to_static
|
|
|
|
infer_shape = [3, -1, -1]
|
|
if config['Architecture']['model_type'] == "rec":
|
|
infer_shape = [3, 32, -1] # for rec model, H must be 32
|
|
|
|
if 'Transform' in config['Architecture'] and config['Architecture'][
|
|
'Transform'] is not None and config['Architecture'][
|
|
'Transform']['name'] == 'TPS':
|
|
logger.info(
|
|
'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
|
|
)
|
|
infer_shape[-1] = 100
|
|
model = to_static(
|
|
model,
|
|
input_spec=[
|
|
paddle.static.InputSpec(
|
|
shape=[None] + infer_shape, dtype='float32')
|
|
])
|
|
|
|
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
|
|
paddle.jit.save(model, save_path)
|
|
logger.info('inference model is saved to {}'.format(save_path))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
|
main(config, device, logger, vdl_writer)
|