7f61f4bb12 | ||
---|---|---|
configs | ||
doc | ||
ppocr | ||
tools | ||
.pre-commit-config.yaml | ||
.style.yapf | ||
LICENSE | ||
README.md | ||
requirments.txt |
README.md
简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
特性
- 超轻量级中文OCR,总模型仅8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
- 检测模型DB(4.1M)+识别模型CRNN(4.5M)
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
超轻量级中文OCR体验
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末效果展示。
1.运行环境配置
前请先参考快速安装配置PaddleOCR运行环境。
2.模型下载
# 创建模型保存目录
mkdir inference && cd inference && mkdir det && mkdir rec
# 下载inference模型文件包
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
# inference模型文件包解压
tar -xf ./inference/inference.tar
3.单张图像或者图像集合预测
实现文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。
# 设置PYTHONPATH环境变量
export PYTHONPATH=.
# 预测image_dir指定的单张图像
python tools/infer/predict_system.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
# 预测image_dir指定的图像集合
python tools/infer/predict_system.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
更多的文本检测、识别串联推理使用方式请参考文档教程中基于推理引擎预测。
文档教程
文本检测算法
PaddleOCR开源的文本检测算法列表:
在ICDAR2015文本检测公开数据集上,算法效果如下:
模型 | 骨干网络 | Hmean |
---|---|---|
EAST | ResNet50_vd | 85.85% |
EAST | MobileNetV3 | 79.08% |
DB | ResNet50_vd | 83.30% |
DB | MobileNetV3 | 73.00% |
PaddleOCR文本检测算法的训练和使用请参考文档教程中文本检测模型训练/评估/预测。
文本识别算法
PaddleOCR开源的文本识别算法列表:
参考DTRB文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别合成数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行效果评估,算法效果如下:
模型 | 骨干网络 | ACC |
---|---|---|
Rosetta | Resnet34_vd | 80.24% |
Rosetta | MobileNetV3 | 78.16% |
CRNN | Resnet34_vd | 82.20% |
CRNN | MobileNetV3 | 79.37% |
STAR-Net | Resnet34_vd | 83.93% |
STAR-Net | MobileNetV3 | 81.56% |
RARE | Resnet34_vd | 84.90% |
RARE | MobileNetV3 | 83.32% |
PaddleOCR文本识别算法的训练和使用请参考文档教程中文本识别模型训练/评估/预测。
端到端OCR算法
- End2End-PSL(百度自研, comming soon)
效果展示
参考文献
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
许可证书
本项目的发布受Apache 2.0 license许可认证。
版本更新
如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。