124 lines
5.0 KiB
Python
Executable File
124 lines
5.0 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import utility
|
|
from ppocr.utils.utility import initial_logger
|
|
logger = initial_logger()
|
|
from ppocr.utils.utility import get_image_file_list
|
|
import cv2
|
|
import copy
|
|
import numpy as np
|
|
import math
|
|
import time
|
|
from ppocr.utils.character import CharacterOps
|
|
|
|
|
|
class TextRecognizer(object):
|
|
def __init__(self, args):
|
|
self.predictor, self.input_tensor, self.output_tensors =\
|
|
utility.create_predictor(args, mode="rec")
|
|
image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
|
self.rec_image_shape = image_shape
|
|
self.character_type = args.rec_char_type
|
|
self.rec_batch_num = args.rec_batch_num
|
|
char_ops_params = {}
|
|
char_ops_params["character_type"] = args.rec_char_type
|
|
char_ops_params["character_dict_path"] = args.rec_char_dict_path
|
|
char_ops_params['loss_type'] = 'ctc'
|
|
self.char_ops = CharacterOps(char_ops_params)
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
if self.character_type == "ch":
|
|
imgW = int(32 * max_wh_ratio)
|
|
h = img.shape[0]
|
|
w = img.shape[1]
|
|
ratio = w / float(h)
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
resized_w = imgW
|
|
else:
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
|
padding_im[:, :, 0:resized_w] = resized_image
|
|
return padding_im
|
|
|
|
def __call__(self, img_list):
|
|
img_num = len(img_list)
|
|
rec_res = []
|
|
batch_num = self.rec_batch_num
|
|
predict_time = 0
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
norm_img_batch = []
|
|
max_wh_ratio = 0
|
|
for ino in range(beg_img_no, end_img_no):
|
|
h, w = img_list[ino].shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for ino in range(beg_img_no, end_img_no):
|
|
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_img_batch.append(norm_img)
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
norm_img_batch = norm_img_batch.copy()
|
|
starttime = time.time()
|
|
self.input_tensor.copy_from_cpu(norm_img_batch)
|
|
self.predictor.zero_copy_run()
|
|
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
|
rec_idx_lod = self.output_tensors[0].lod()[0]
|
|
predict_batch = self.output_tensors[1].copy_to_cpu()
|
|
predict_lod = self.output_tensors[1].lod()[0]
|
|
elapse = time.time() - starttime
|
|
predict_time += elapse
|
|
starttime = time.time()
|
|
for rno in range(len(rec_idx_lod) - 1):
|
|
beg = rec_idx_lod[rno]
|
|
end = rec_idx_lod[rno + 1]
|
|
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
|
preds_text = self.char_ops.decode(rec_idx_tmp)
|
|
beg = predict_lod[rno]
|
|
end = predict_lod[rno + 1]
|
|
probs = predict_batch[beg:end, :]
|
|
ind = np.argmax(probs, axis=1)
|
|
blank = probs.shape[1]
|
|
valid_ind = np.where(ind != (blank - 1))[0]
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
rec_res.append([preds_text, score])
|
|
return rec_res, predict_time
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = utility.parse_args()
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
text_recognizer = TextRecognizer(args)
|
|
valid_image_file_list = []
|
|
img_list = []
|
|
for image_file in image_file_list:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
valid_image_file_list.append(image_file)
|
|
img_list.append(img)
|
|
rec_res, predict_time = text_recognizer(img_list)
|
|
for ino in range(len(img_list)):
|
|
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
|
print("Total predict time for %d images:%.3f" %
|
|
(len(img_list), predict_time))
|