158 lines
8.2 KiB
Bash
158 lines
8.2 KiB
Bash
#!/bin/bash
|
|
# Usage:
|
|
# bash test/test.sh ./test/params.txt 'lite_train_infer'
|
|
|
|
FILENAME=$1
|
|
|
|
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
|
|
MODE=$2
|
|
# prepare pretrained weights and dataset
|
|
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
|
if [ ${MODE} = "lite_train_infer" ];then
|
|
# pretrain lite train data
|
|
rm -rf ./train_data/icdar2015
|
|
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
|
|
cd ./train_data/ && tar xf icdar2015_lite.tar &&
|
|
ln -s ./icdar2015_lite ./icdar2015
|
|
cd ../
|
|
epoch=10
|
|
eval_batch_step=10
|
|
elif [ ${MODE} = "whole_train_infer" ];then
|
|
rm -rf ./train_data/icdar2015
|
|
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
|
|
cd ./train_data/ && tar xf icdar2015.tar && cd ../
|
|
epoch=300
|
|
eval_batch_step=200
|
|
else
|
|
echo "Do Nothing"
|
|
fi
|
|
|
|
|
|
dataline=$(cat ${FILENAME})
|
|
# parser params
|
|
IFS=$'\n'
|
|
lines=(${dataline})
|
|
function func_parser(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
tmp=${array[1]}
|
|
echo ${tmp}
|
|
}
|
|
IFS=$'\n'
|
|
# The training params
|
|
train_model_list=$(func_parser "${lines[0]}")
|
|
gpu_list=$(func_parser "${lines[1]}")
|
|
auto_cast_list=$(func_parser "${lines[2]}")
|
|
slim_trainer_list=$(func_parser "${lines[3]}")
|
|
python=$(func_parser "${lines[4]}")
|
|
# inference params
|
|
inference=$(func_parser "${lines[5]}")
|
|
devices=$(func_parser "${lines[6]}")
|
|
use_mkldnn_list=$(func_parser "${lines[7]}")
|
|
cpu_threads_list=$(func_parser "${lines[8]}")
|
|
rec_batch_size_list=$(func_parser "${lines[9]}")
|
|
gpu_trt_list=$(func_parser "${lines[10]}")
|
|
gpu_precision_list=$(func_parser "${lines[11]}")
|
|
img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
|
|
# train superparameters
|
|
#epoch=$(func_parser "${lines[12]}")
|
|
#checkpoints=$(func_parser "${lines[13]}")
|
|
|
|
|
|
for train_model in ${train_model_list[*]}; do
|
|
if [ ${train_model} = "ocr_det" ];then
|
|
model_name="det"
|
|
yml_file="configs/det/det_mv3_db.yml"
|
|
elif [ ${train_model} = "ocr_rec" ];then
|
|
model_name="rec"
|
|
yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
|
|
else
|
|
model_name="det"
|
|
yml_file="configs/det/det_mv3_db.yml"
|
|
fi
|
|
IFS="|"
|
|
for gpu in ${gpu_list[*]}; do
|
|
use_gpu=True
|
|
if [ ${gpu} = "-1" ];then
|
|
lanuch=""
|
|
use_gpu=False
|
|
elif [ ${#gpu} -le 1 ];then
|
|
launch=""
|
|
else
|
|
launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}"
|
|
fi
|
|
# echo "model_name: ${model_name} yml_file: ${yml_file} launch: ${launch} gpu: ${gpu}"
|
|
for auto_cast in ${auto_cast_list[*]}; do
|
|
for slim_trainer in ${slim_trainer_list[*]}; do
|
|
if [ ${slim_trainer} = "norm" ]; then
|
|
trainer="tools/train.py"
|
|
export_model="tools/export_model.py"
|
|
elif [ ${slim_trainer} = "quant" ]; then
|
|
trainer="deploy/slim/quantization/quant.py"
|
|
export_model="deploy/slim/quantization/export_model.py"
|
|
elif [ ${slim_trainer} = "prune" ]; then
|
|
trainer="deploy/slim/prune/sensitivity_anal.py"
|
|
export_model="deploy/slim/prune/export_prune_model.py"
|
|
elif [ ${slim_trainer} = "distill" ]; then
|
|
trainer="deploy/slim/distill/train_dml.py"
|
|
export_model="deploy/slim/distill/export_distill_model.py"
|
|
else
|
|
trainer="tools/train.py"
|
|
export_model="tools/export_model.py"
|
|
fi
|
|
# dataset="Train.dataset.data_dir=${train_dir} Train.dataset.label_file_list=${train_label_file} Eval.dataset.data_dir=${eval_dir} Eval.dataset.label_file_list=${eval_label_file}"
|
|
save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}
|
|
|
|
${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}
|
|
${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}
|
|
if [ $? -eq 0 ]; then
|
|
echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${save_log}/train.log
|
|
else
|
|
cat ${save_log}/train.log
|
|
echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${save_log}/train.log
|
|
fi
|
|
|
|
if [ "${model_name}" = "det" ]; then
|
|
export rec_batch_size_list=( "1" )
|
|
inference="tools/infer/predict_det.py"
|
|
elif [ "${model_name}" = "rec" ]; then
|
|
inference="tools/infer/predict_rec.py"
|
|
fi
|
|
# inference
|
|
for device in ${devices[*]}; do
|
|
if [ ${device} = "cpu" ]; then
|
|
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
|
for threads in ${cpu_threads_list[*]}; do
|
|
for rec_batch_size in ${rec_batch_size_list[*]}; do
|
|
echo ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
|
|
${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
|
|
if [ $? -eq 0 ]; then
|
|
echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
|
|
else
|
|
cat ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
|
|
echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
|
|
fi
|
|
|
|
done
|
|
done
|
|
done
|
|
else
|
|
for use_trt in ${gpu_trt_list[*]}; do
|
|
for precision in ${gpu_precision_list[*]}; do
|
|
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
|
|
continue
|
|
fi
|
|
for rec_batch_size in ${rec_batch_size_list[*]}; do
|
|
# echo "${model_name} ${det_model_dir} ${rec_model_dir}, use_trt: ${use_trt} use_fp16: ${use_fp16}"
|
|
${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log
|
|
done
|
|
done
|
|
done
|
|
fi
|
|
done
|
|
done
|
|
done
|
|
done
|
|
done
|