337 lines
14 KiB
Python
Executable File
337 lines
14 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
import cv2
|
|
import copy
|
|
import numpy as np
|
|
import math
|
|
import time
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import tools.infer.utility as utility
|
|
from ppocr.utils.utility import initial_logger
|
|
logger = initial_logger()
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
|
from ppocr.utils.character import CharacterOps
|
|
|
|
|
|
class TextRecognizer(object):
|
|
def __init__(self, args):
|
|
if args.use_pdserving is False:
|
|
self.predictor, self.input_tensor, self.output_tensors =\
|
|
utility.create_predictor(args, mode="rec")
|
|
self.use_zero_copy_run = args.use_zero_copy_run
|
|
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
|
self.character_type = args.rec_char_type
|
|
self.rec_batch_num = args.rec_batch_num
|
|
self.rec_algorithm = args.rec_algorithm
|
|
self.text_len = args.max_text_length
|
|
char_ops_params = {
|
|
"character_type": args.rec_char_type,
|
|
"character_dict_path": args.rec_char_dict_path,
|
|
"use_space_char": args.use_space_char,
|
|
"max_text_length": args.max_text_length
|
|
}
|
|
if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]:
|
|
char_ops_params['loss_type'] = 'ctc'
|
|
self.loss_type = 'ctc'
|
|
elif self.rec_algorithm == "RARE":
|
|
char_ops_params['loss_type'] = 'attention'
|
|
self.loss_type = 'attention'
|
|
elif self.rec_algorithm == "SRN":
|
|
char_ops_params['loss_type'] = 'srn'
|
|
self.loss_type = 'srn'
|
|
self.char_ops = CharacterOps(char_ops_params)
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
assert imgC == img.shape[2]
|
|
if self.character_type == "ch":
|
|
imgW = int((32 * max_wh_ratio))
|
|
h, w = img.shape[:2]
|
|
ratio = w / float(h)
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
resized_w = imgW
|
|
else:
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
|
padding_im[:, :, 0:resized_w] = resized_image
|
|
return padding_im
|
|
|
|
def resize_norm_img_srn(self, img, image_shape):
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
img_black = np.zeros((imgH, imgW))
|
|
im_hei = img.shape[0]
|
|
im_wid = img.shape[1]
|
|
|
|
if im_wid <= im_hei * 1:
|
|
img_new = cv2.resize(img, (imgH * 1, imgH))
|
|
elif im_wid <= im_hei * 2:
|
|
img_new = cv2.resize(img, (imgH * 2, imgH))
|
|
elif im_wid <= im_hei * 3:
|
|
img_new = cv2.resize(img, (imgH * 3, imgH))
|
|
else:
|
|
img_new = cv2.resize(img, (imgW, imgH))
|
|
|
|
img_np = np.asarray(img_new)
|
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
|
img_black[:, 0:img_np.shape[1]] = img_np
|
|
img_black = img_black[:, :, np.newaxis]
|
|
|
|
row, col, c = img_black.shape
|
|
c = 1
|
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
|
|
|
def srn_other_inputs(self, image_shape, num_heads, max_text_length,
|
|
char_num):
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
feature_dim = int((imgH / 8) * (imgW / 8))
|
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
|
|
(feature_dim, 1)).astype('int64')
|
|
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
|
|
(max_text_length, 1)).astype('int64')
|
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
|
[-1, 1, max_text_length, max_text_length])
|
|
gsrm_slf_attn_bias1 = np.tile(
|
|
gsrm_slf_attn_bias1,
|
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
|
[-1, 1, max_text_length, max_text_length])
|
|
gsrm_slf_attn_bias2 = np.tile(
|
|
gsrm_slf_attn_bias2,
|
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
|
|
|
encoder_word_pos = encoder_word_pos[np.newaxis, :]
|
|
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
|
|
|
|
return [
|
|
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2
|
|
]
|
|
|
|
def process_image_srn(self,
|
|
img,
|
|
image_shape,
|
|
num_heads,
|
|
max_text_length,
|
|
char_ops=None):
|
|
norm_img = self.resize_norm_img_srn(img, image_shape)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
char_num = char_ops.get_char_num()
|
|
|
|
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
|
self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num)
|
|
|
|
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
|
|
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
|
|
|
|
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2)
|
|
|
|
def __call__(self, img_list):
|
|
img_num = len(img_list)
|
|
# Calculate the aspect ratio of all text bars
|
|
width_list = []
|
|
for img in img_list:
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
# Sorting can speed up the recognition process
|
|
indices = np.argsort(np.array(width_list))
|
|
|
|
#rec_res = []
|
|
rec_res = [['', 0.0]] * img_num
|
|
batch_num = self.rec_batch_num
|
|
predict_time = 0
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
norm_img_batch = []
|
|
max_wh_ratio = 0
|
|
for ino in range(beg_img_no, end_img_no):
|
|
# h, w = img_list[ino].shape[0:2]
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for ino in range(beg_img_no, end_img_no):
|
|
if self.loss_type != "srn":
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
|
max_wh_ratio)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_img_batch.append(norm_img)
|
|
else:
|
|
norm_img = self.process_image_srn(img_list[indices[ino]],
|
|
self.rec_image_shape, 8,
|
|
25, self.char_ops)
|
|
encoder_word_pos_list = []
|
|
gsrm_word_pos_list = []
|
|
gsrm_slf_attn_bias1_list = []
|
|
gsrm_slf_attn_bias2_list = []
|
|
encoder_word_pos_list.append(norm_img[1])
|
|
gsrm_word_pos_list.append(norm_img[2])
|
|
gsrm_slf_attn_bias1_list.append(norm_img[3])
|
|
gsrm_slf_attn_bias2_list.append(norm_img[4])
|
|
norm_img_batch.append(norm_img[0])
|
|
|
|
norm_img_batch = np.concatenate(norm_img_batch, axis=0)
|
|
norm_img_batch = norm_img_batch.copy()
|
|
|
|
if self.loss_type == "srn":
|
|
starttime = time.time()
|
|
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
|
|
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
|
|
gsrm_slf_attn_bias1_list = np.concatenate(
|
|
gsrm_slf_attn_bias1_list)
|
|
gsrm_slf_attn_bias2_list = np.concatenate(
|
|
gsrm_slf_attn_bias2_list)
|
|
starttime = time.time()
|
|
|
|
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
|
|
encoder_word_pos_list = fluid.core.PaddleTensor(
|
|
encoder_word_pos_list)
|
|
gsrm_word_pos_list = fluid.core.PaddleTensor(gsrm_word_pos_list)
|
|
gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor(
|
|
gsrm_slf_attn_bias1_list)
|
|
gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor(
|
|
gsrm_slf_attn_bias2_list)
|
|
|
|
inputs = [
|
|
norm_img_batch, encoder_word_pos_list,
|
|
gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list,
|
|
gsrm_word_pos_list
|
|
]
|
|
|
|
self.predictor.run(inputs)
|
|
else:
|
|
starttime = time.time()
|
|
if self.use_zero_copy_run:
|
|
self.input_tensor.copy_from_cpu(norm_img_batch)
|
|
self.predictor.zero_copy_run()
|
|
else:
|
|
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
|
|
self.predictor.run([norm_img_batch])
|
|
|
|
if self.loss_type == "ctc":
|
|
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
|
rec_idx_lod = self.output_tensors[0].lod()[0]
|
|
predict_batch = self.output_tensors[1].copy_to_cpu()
|
|
predict_lod = self.output_tensors[1].lod()[0]
|
|
elapse = time.time() - starttime
|
|
predict_time += elapse
|
|
for rno in range(len(rec_idx_lod) - 1):
|
|
beg = rec_idx_lod[rno]
|
|
end = rec_idx_lod[rno + 1]
|
|
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
|
preds_text = self.char_ops.decode(rec_idx_tmp)
|
|
beg = predict_lod[rno]
|
|
end = predict_lod[rno + 1]
|
|
probs = predict_batch[beg:end, :]
|
|
ind = np.argmax(probs, axis=1)
|
|
blank = probs.shape[1]
|
|
valid_ind = np.where(ind != (blank - 1))[0]
|
|
if len(valid_ind) == 0:
|
|
continue
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
# rec_res.append([preds_text, score])
|
|
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
|
elif self.loss_type == 'srn':
|
|
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
|
probs = self.output_tensors[1].copy_to_cpu()
|
|
char_num = self.char_ops.get_char_num()
|
|
preds = rec_idx_batch.reshape(-1)
|
|
elapse = time.time() - starttime
|
|
predict_time += elapse
|
|
total_preds = preds.copy()
|
|
for ino in range(int(len(rec_idx_batch) / self.text_len)):
|
|
preds = total_preds[ino * self.text_len:(ino + 1) *
|
|
self.text_len]
|
|
ind = np.argmax(probs, axis=1)
|
|
valid_ind = np.where(preds != int(char_num - 1))[0]
|
|
if len(valid_ind) == 0:
|
|
continue
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
preds = preds[:valid_ind[-1] + 1]
|
|
preds_text = self.char_ops.decode(preds)
|
|
|
|
rec_res[indices[beg_img_no + ino]] = [preds_text, score]
|
|
else:
|
|
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
|
predict_batch = self.output_tensors[1].copy_to_cpu()
|
|
elapse = time.time() - starttime
|
|
predict_time += elapse
|
|
for rno in range(len(rec_idx_batch)):
|
|
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
|
|
if len(end_pos) <= 1:
|
|
preds = rec_idx_batch[rno, 1:]
|
|
score = np.mean(predict_batch[rno, 1:])
|
|
else:
|
|
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
|
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
|
preds_text = self.char_ops.decode(preds)
|
|
# rec_res.append([preds_text, score])
|
|
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
|
|
|
return rec_res, predict_time
|
|
|
|
|
|
def main(args):
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
text_recognizer = TextRecognizer(args)
|
|
valid_image_file_list = []
|
|
img_list = []
|
|
for image_file in image_file_list:
|
|
img, flag = check_and_read_gif(image_file)
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
valid_image_file_list.append(image_file)
|
|
img_list.append(img)
|
|
|
|
try:
|
|
rec_res, predict_time = text_recognizer(img_list)
|
|
except Exception as e:
|
|
print(e)
|
|
logger.info(
|
|
"ERROR!!!! \n"
|
|
"Please read the FAQ: https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
|
"If your model has tps module: "
|
|
"TPS does not support variable shape.\n"
|
|
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
|
exit()
|
|
for ino in range(len(img_list)):
|
|
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
|
print("Total predict time for %d images:%.3f" %
|
|
(len(img_list), predict_time))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(utility.parse_args())
|