PaddleOCR/tools/infer/predict_rec.py

162 lines
6.6 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '../..'))
import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps
class TextRecognizer(object):
def __init__(self, args):
self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="rec")
image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.rec_image_shape = image_shape
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
char_ops_params = {}
char_ops_params["character_type"] = args.rec_char_type
char_ops_params["character_dict_path"] = args.rec_char_dict_path
if self.rec_algorithm != "RARE":
char_ops_params['loss_type'] = 'ctc'
self.loss_type = 'ctc'
else:
char_ops_params['loss_type'] = 'attention'
self.loss_type = 'attention'
self.char_ops = CharacterOps(char_ops_params)
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
if self.character_type == "ch":
imgW = int(32 * max_wh_ratio)
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def __call__(self, img_list):
img_num = len(img_list)
rec_res = []
batch_num = self.rec_batch_num
predict_time = 0
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[ino].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
if self.loss_type == "ctc":
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
rec_idx_lod = self.output_tensors[0].lod()[0]
predict_batch = self.output_tensors[1].copy_to_cpu()
predict_lod = self.output_tensors[1].lod()[0]
elapse = time.time() - starttime
predict_time += elapse
for rno in range(len(rec_idx_lod) - 1):
beg = rec_idx_lod[rno]
end = rec_idx_lod[rno + 1]
rec_idx_tmp = rec_idx_batch[beg:end, 0]
preds_text = self.char_ops.decode(rec_idx_tmp)
beg = predict_lod[rno]
end = predict_lod[rno + 1]
probs = predict_batch[beg:end, :]
ind = np.argmax(probs, axis=1)
blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0]
score = np.mean(probs[valid_ind, ind[valid_ind]])
rec_res.append([preds_text, score])
else:
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
predict_batch = self.output_tensors[1].copy_to_cpu()
elapse = time.time() - starttime
predict_time += elapse
for rno in range(len(rec_idx_batch)):
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
if len(end_pos) <= 1:
preds = rec_idx_batch[rno, 1:]
score = np.mean(predict_batch[rno, 1:])
else:
preds = rec_idx_batch[rno, 1:end_pos[1]]
score = np.mean(predict_batch[rno, 1:end_pos[1]])
preds_text = self.char_ops.decode(preds)
rec_res.append([preds_text, score])
return rec_res, predict_time
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = get_image_file_list(args.image_dir)
text_recognizer = TextRecognizer(args)
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(img)
try:
rec_res, predict_time = text_recognizer(img_list)
except Exception as e:
print(e)
logger.info(
"ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
print("Total predict time for %d images:%.3f" %
(len(img_list), predict_time))