163 lines
6.1 KiB
Python
163 lines
6.1 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
try:
|
|
from paddle_serving_server_gpu.web_service import WebService, Op
|
|
except ImportError:
|
|
from paddle_serving_server.web_service import WebService, Op
|
|
|
|
import logging
|
|
import numpy as np
|
|
import cv2
|
|
import base64
|
|
# from paddle_serving_app.reader import OCRReader
|
|
from ocr_reader import OCRReader, DetResizeForTest
|
|
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
|
|
|
_LOGGER = logging.getLogger()
|
|
|
|
|
|
class DetOp(Op):
|
|
def init_op(self):
|
|
self.det_preprocess = Sequential([
|
|
DetResizeForTest(), Div(255),
|
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
|
(2, 0, 1))
|
|
])
|
|
self.filter_func = FilterBoxes(10, 10)
|
|
self.post_func = DBPostProcess({
|
|
"thresh": 0.3,
|
|
"box_thresh": 0.5,
|
|
"max_candidates": 1000,
|
|
"unclip_ratio": 1.5,
|
|
"min_size": 3
|
|
})
|
|
|
|
def preprocess(self, input_dicts, data_id, log_id):
|
|
(_, input_dict), = input_dicts.items()
|
|
data = base64.b64decode(input_dict["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
# Note: class variables(self.var) can only be used in process op mode
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
self.im = im
|
|
self.ori_h, self.ori_w, _ = im.shape
|
|
|
|
det_img = self.det_preprocess(self.im)
|
|
_, self.new_h, self.new_w = det_img.shape
|
|
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
|
|
|
|
def postprocess(self, input_dicts, fetch_dict, log_id):
|
|
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
|
|
ratio_list = [
|
|
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
|
|
]
|
|
dt_boxes_list = self.post_func(det_out, [ratio_list])
|
|
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
|
|
out_dict = {"dt_boxes": dt_boxes, "image": self.im}
|
|
|
|
return out_dict, None, ""
|
|
|
|
|
|
class RecOp(Op):
|
|
def init_op(self):
|
|
self.ocr_reader = OCRReader(
|
|
char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
|
|
|
|
self.get_rotate_crop_image = GetRotateCropImage()
|
|
self.sorted_boxes = SortedBoxes()
|
|
|
|
def preprocess(self, input_dicts, data_id, log_id):
|
|
(_, input_dict), = input_dicts.items()
|
|
im = input_dict["image"]
|
|
dt_boxes = input_dict["dt_boxes"]
|
|
dt_boxes = self.sorted_boxes(dt_boxes)
|
|
feed_list = []
|
|
img_list = []
|
|
max_wh_ratio = 0
|
|
## Many mini-batchs, the type of feed_data is list.
|
|
max_batch_size = 6 # len(dt_boxes)
|
|
|
|
# If max_batch_size is 0, skipping predict stage
|
|
if max_batch_size == 0:
|
|
return {}, True, None, ""
|
|
boxes_size = len(dt_boxes)
|
|
batch_size = boxes_size // max_batch_size
|
|
rem = boxes_size % max_batch_size
|
|
#_LOGGER.info("max_batch_len:{}, batch_size:{}, rem:{}, boxes_size:{}".format(max_batch_size, batch_size, rem, boxes_size))
|
|
for bt_idx in range(0, batch_size + 1):
|
|
imgs = None
|
|
boxes_num_in_one_batch = 0
|
|
if bt_idx == batch_size:
|
|
if rem == 0:
|
|
continue
|
|
else:
|
|
boxes_num_in_one_batch = rem
|
|
elif bt_idx < batch_size:
|
|
boxes_num_in_one_batch = max_batch_size
|
|
else:
|
|
_LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
|
|
format(bt_idx, batch_size))
|
|
break
|
|
|
|
start = bt_idx * max_batch_size
|
|
end = start + boxes_num_in_one_batch
|
|
img_list = []
|
|
for box_idx in range(start, end):
|
|
boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
|
|
img_list.append(boximg)
|
|
h, w = boximg.shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
|
|
max_wh_ratio).shape
|
|
|
|
imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
|
|
for id, img in enumerate(img_list):
|
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
|
imgs[id] = norm_img
|
|
feed = {"x": imgs.copy()}
|
|
feed_list.append(feed)
|
|
|
|
return feed_list, False, None, ""
|
|
def postprocess(self, input_dicts, fetch_data, log_id):
|
|
res_list = []
|
|
if isinstance(fetch_data, dict):
|
|
if len(fetch_data) > 0:
|
|
rec_batch_res = self.ocr_reader.postprocess(
|
|
fetch_data, with_score=True)
|
|
for res in rec_batch_res:
|
|
res_list.append(res[0])
|
|
elif isinstance(fetch_data, list):
|
|
for one_batch in fetch_data:
|
|
one_batch_res = self.ocr_reader.postprocess(
|
|
one_batch, with_score=True)
|
|
for res in one_batch_res:
|
|
res_list.append(res[0])
|
|
|
|
res = {"res": str(res_list)}
|
|
return res, None, ""
|
|
|
|
|
|
class OcrService(WebService):
|
|
def get_pipeline_response(self, read_op):
|
|
det_op = DetOp(name="det", input_ops=[read_op])
|
|
rec_op = RecOp(name="rec", input_ops=[det_op])
|
|
return rec_op
|
|
|
|
|
|
uci_service = OcrService(name="ocr")
|
|
uci_service.prepare_pipeline_config("config.yml")
|
|
uci_service.run_service()
|