126 lines
4.8 KiB
Python
126 lines
4.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import re
|
|
import base64
|
|
from clas_local_server import TextClassifierHelper
|
|
from det_local_server import TextDetectorHelper
|
|
from rec_local_server import TextRecognizerHelper
|
|
from tools.infer.predict_system import TextSystem, sorted_boxes
|
|
from paddle_serving_app.local_predict import Debugger
|
|
import copy
|
|
from params import read_params
|
|
|
|
global_args = read_params()
|
|
|
|
if global_args.use_gpu:
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
else:
|
|
from paddle_serving_server.web_service import WebService
|
|
|
|
|
|
class TextSystemHelper(TextSystem):
|
|
def __init__(self, args):
|
|
self.text_detector = TextDetectorHelper(args)
|
|
self.text_recognizer = TextRecognizerHelper(args)
|
|
self.use_angle_cls = args.use_angle_cls
|
|
if self.use_angle_cls:
|
|
self.clas_client = Debugger()
|
|
self.clas_client.load_model_config(
|
|
global_args.cls_server_dir, gpu=True, profile=False)
|
|
self.text_classifier = TextClassifierHelper(args)
|
|
self.det_client = Debugger()
|
|
self.det_client.load_model_config(
|
|
global_args.det_server_dir, gpu=True, profile=False)
|
|
self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"]
|
|
|
|
def preprocess(self, img):
|
|
feed, fetch, self.tmp_args = self.text_detector.preprocess(img)
|
|
fetch_map = self.det_client.predict(feed, fetch)
|
|
outputs = [fetch_map[x] for x in fetch]
|
|
dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args)
|
|
if dt_boxes is None:
|
|
return None, None
|
|
img_crop_list = []
|
|
dt_boxes = sorted_boxes(dt_boxes)
|
|
self.dt_boxes = dt_boxes
|
|
for bno in range(len(dt_boxes)):
|
|
tmp_box = copy.deepcopy(dt_boxes[bno])
|
|
img_crop = self.get_rotate_crop_image(img, tmp_box)
|
|
img_crop_list.append(img_crop)
|
|
if self.use_angle_cls:
|
|
feed, fetch, self.tmp_args = self.text_classifier.preprocess(
|
|
img_crop_list)
|
|
fetch_map = self.clas_client.predict(feed, fetch)
|
|
outputs = [fetch_map[x] for x in self.text_classifier.fetch]
|
|
for x in fetch_map.keys():
|
|
if ".lod" in x:
|
|
self.tmp_args[x] = fetch_map[x]
|
|
img_crop_list, _ = self.text_classifier.postprocess(outputs,
|
|
self.tmp_args)
|
|
feed, fetch, self.tmp_args = self.text_recognizer.preprocess(
|
|
img_crop_list)
|
|
return feed, self.fetch, self.tmp_args
|
|
|
|
def postprocess(self, outputs, args):
|
|
return self.text_recognizer.postprocess(outputs, args)
|
|
|
|
|
|
class OCRService(WebService):
|
|
def init_rec(self):
|
|
self.text_system = TextSystemHelper(global_args)
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
# TODO: to handle batch rec images
|
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
feed, fetch, self.tmp_args = self.text_system.preprocess(im)
|
|
return feed, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
outputs = [fetch_map[x] for x in self.text_system.fetch]
|
|
for x in fetch_map.keys():
|
|
if ".lod" in x:
|
|
self.tmp_args[x] = fetch_map[x]
|
|
rec_res = self.text_system.postprocess(outputs, self.tmp_args)
|
|
res = []
|
|
for i in range(len(rec_res)):
|
|
tmp_res = {
|
|
"text_region": self.text_system.dt_boxes[i].tolist(),
|
|
"text": rec_res[i][0],
|
|
"confidence": float(rec_res[i][1])
|
|
}
|
|
res.append(tmp_res)
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ocr_service = OCRService(name="ocr")
|
|
ocr_service.load_model_config(global_args.rec_server_dir)
|
|
ocr_service.init_rec()
|
|
if global_args.use_gpu:
|
|
ocr_service.prepare_server(
|
|
workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
else:
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
|
ocr_service.run_debugger_service()
|
|
ocr_service.run_web_service()
|