PaddleOCR/README.md

175 lines
7.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。
## 特性
- 超轻量级中文OCR总模型仅8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
- 检测模型DB4.1M+识别模型CRNN4.5M
- 多种文本检测训练算法EAST、DB
- 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE
## **超轻量级中文OCR体验**
![](doc/imgs_results/11.jpg)
上图是超轻量级中文OCR模型效果展示更多效果图请见文末[效果展示](#效果展示)。
#### 1.环境配置
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
#### 2.模型下载
```
# 下载inference模型文件包
wget https://paddleocr.bj.bcebos.com/inference.tar
# inference模型文件包解压
tar -xf inference.tar
```
#### 3.单张图像或者图像集合预测
以下代码实现了文本检测、识别串联推理在执行预测时需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
```
# 设置PYTHONPATH环境变量
export PYTHONPATH=.
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
# 如果想使用CPU进行预测执行命令如下
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/" --use_gpu=False
```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/inference.md)。
## 文档教程
- [快速安装](./doc/installation.md)
- [文本检测模型训练/评估/预测](./doc/detection.md)(持续更新中)
- [文本识别模型训练/评估/预测](./doc/recognition.md)(持续更新中)
- [基于预测引擎推理](./doc/inference.md)(持续更新中)
## 文本检测算法
PaddleOCR开源的文本检测算法列表
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
在ICDAR2015文本检测公开数据集上算法效果如下
|模型|骨干网络|Hmean|下载链接|
|-|-|-|-|
|EAST|ResNet50_vd|85.85%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|79.08%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.30%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|73.00%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)。
## 文本识别算法
PaddleOCR开源的文本识别算法列表
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下
|模型|骨干网络|Avg Accuracy|下载链接|
|-|-|-|-|
|Rosetta|Resnet34_vd|80.24%|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)。
## 端到端OCR算法
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
<a name="效果展示"></a>
## 效果展示
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
## 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
## 版本更新
## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。