PaddleOCR/configs/det/det_mv3_east.yml

109 lines
2.5 KiB
YAML

Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_mv3/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt
Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: EASTFPN
model_name: small
Head:
name: EASTHead
model_name: small
Loss:
name: EASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2