PaddleOCR/doc/recognition.md

136 lines
4.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 文字识别
### 数据准备
PaddleOCR 支持两种数据格式: `lmdb` 用于训练公开数据,调试算法, `通用数据` 训练自己的数据:
请按如下步骤设置数据集:
训练数据的默认存储路径是 `PaddleOCR/train_data`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
```
ln -sf <path/to/dataset> <path/to/paddle_detection>/train_data/dataset
```
* 数据下载
若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),下载 benchmark 所需的lmdb格式数据集。
* 使用自己数据集:
若您希望使用自己的数据进行训练,请参考下文组织您的数据。
- 训练集
首先请将训练图片放入同一个文件夹train_images并用一个txt文件rec_gt_train.txt记录图片路径和标签。
* 注意: 默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错
```
" 图像文件名 图像标注信息 "
train_data/train_0001.jpg 简单可依赖
train_data/train_0002.jpg 用科技让复杂的世界更简单
```
最终训练集应有如下文件结构:
```
|-train_data
|- rec_gt_train.txt
|- train_imags
|- train_001.jpg
|- train_002.jpg
|- train_003.jpg
| ...
```
- 评估集
同训练集类似评估集也需要提供一个包含所有图片的文件夹eval_images和一个rec_gt_eval.txt评估集的结构如下所示
```
|-train_data
|- rec_gt_eval.txt
|- eval_imags
|- eval_001.jpg
|- eval_002.jpg
|- eval_003.jpg
| ...
```
- 字典
最后需要提供一个字典({word_dict_name}.txt使模型在训练时可以将所有出现的字符映射为字典的索引。
因此字典需要包含所有希望被正确识别的字符,{word_dict_name}.txt需要写成如下格式并以 `utf-8` 编码格式保存:
```
l
d
a
d
r
n
```
word_dict.txt 每行有一个单字将字符与数字索引映射在一起“and” 将被映射成 [2 5 1]
`ppocr/utils/ppocr_keys_v1.txt` 是一个包含6623个字符的中文字典
`ppocr/utils/ic15_dict.txt` 是一个包含36个字符的英文字典
您可以按需使用。如需自定义dic文件请修改 `configs/rec/rec_icdar15_train.yml` 中的 `character_dict_path` 字段。
### 启动训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本本节将以 CRNN 识别模型为例:
```
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡多卡训练通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
python tools/train.py -c configs/rec/rec_icdar15_train.yml
```
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率默认每2000个iter评估一次。评估过程中默认将最佳acc模型保存为 `output/rec_CRNN/best_accuracy`
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
* 提示: 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练
### 评估
评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
```
export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
python tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
### 预测
* 训练引擎的预测
PaddleOCR 提供了训练好的中文模型,可以[下载](todo: add)进行快速预测。
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
```
python tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
得到输入图像的预测结果:
```
infer_img: infer_img/328_4.jpg
# 字符在字典中的索引
[1863 921 55 155 1863 4209 3344 486 914 1863 4918]
# 预测结果
冷库专用冷冻液/载冷剂
```