135 lines
5.2 KiB
Python
135 lines
5.2 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import os
|
|
import random
|
|
import traceback
|
|
from paddle.io import Dataset
|
|
|
|
from .imaug import transform, create_operators
|
|
|
|
|
|
class SimpleDataSet(Dataset):
|
|
def __init__(self, config, mode, logger, seed=None):
|
|
super(SimpleDataSet, self).__init__()
|
|
self.logger = logger
|
|
self.mode = mode.lower()
|
|
|
|
global_config = config['Global']
|
|
dataset_config = config[mode]['dataset']
|
|
loader_config = config[mode]['loader']
|
|
|
|
self.delimiter = dataset_config.get('delimiter', '\t')
|
|
label_file_list = dataset_config.pop('label_file_list')
|
|
data_source_num = len(label_file_list)
|
|
ratio_list = dataset_config.get("ratio_list", [1.0])
|
|
if isinstance(ratio_list, (float, int)):
|
|
ratio_list = [float(ratio_list)] * int(data_source_num)
|
|
|
|
assert len(
|
|
ratio_list
|
|
) == data_source_num, "The length of ratio_list should be the same as the file_list."
|
|
self.data_dir = dataset_config['data_dir']
|
|
self.do_shuffle = loader_config['shuffle']
|
|
|
|
self.seed = seed
|
|
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
|
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
|
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
|
if self.mode == "train" and self.do_shuffle:
|
|
self.shuffle_data_random()
|
|
self.ops = create_operators(dataset_config['transforms'], global_config)
|
|
|
|
def get_image_info_list(self, file_list, ratio_list):
|
|
if isinstance(file_list, str):
|
|
file_list = [file_list]
|
|
data_lines = []
|
|
for idx, file in enumerate(file_list):
|
|
with open(file, "rb") as f:
|
|
lines = f.readlines()
|
|
if self.mode == "train" or ratio_list[idx] < 1.0:
|
|
random.seed(self.seed)
|
|
lines = random.sample(lines,
|
|
round(len(lines) * ratio_list[idx]))
|
|
data_lines.extend(lines)
|
|
return data_lines
|
|
|
|
def shuffle_data_random(self):
|
|
random.seed(self.seed)
|
|
random.shuffle(self.data_lines)
|
|
return
|
|
|
|
def get_ext_data(self):
|
|
ext_data_num = 0
|
|
for op in self.ops:
|
|
if hasattr(op, 'ext_data_num'):
|
|
ext_data_num = getattr(op, 'ext_data_num')
|
|
break
|
|
load_data_ops = self.ops[:2]
|
|
ext_data = []
|
|
|
|
while len(ext_data) < ext_data_num:
|
|
file_idx = self.data_idx_order_list[np.random.randint(self.__len__(
|
|
))]
|
|
data_line = self.data_lines[file_idx]
|
|
data_line = data_line.decode('utf-8')
|
|
substr = data_line.strip("\n").split(self.delimiter)
|
|
file_name = substr[0]
|
|
label = substr[1]
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
data = {'img_path': img_path, 'label': label}
|
|
if not os.path.exists(img_path):
|
|
continue
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
data = transform(data, load_data_ops)
|
|
if data is None:
|
|
continue
|
|
ext_data.append(data)
|
|
return ext_data
|
|
|
|
def __getitem__(self, idx):
|
|
file_idx = self.data_idx_order_list[idx]
|
|
data_line = self.data_lines[file_idx]
|
|
try:
|
|
data_line = data_line.decode('utf-8')
|
|
substr = data_line.strip("\n").strip("\r").split(self.delimiter)
|
|
file_name = substr[0]
|
|
label = substr[1]
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
data = {'img_path': img_path, 'label': label}
|
|
if not os.path.exists(img_path):
|
|
raise Exception("{} does not exist!".format(img_path))
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
data['ext_data'] = self.get_ext_data()
|
|
outs = transform(data, self.ops)
|
|
except:
|
|
error_meg = traceback.format_exc()
|
|
self.logger.error(
|
|
"When parsing line {}, error happened with msg: {}".format(
|
|
data_line, error_meg))
|
|
outs = None
|
|
if outs is None:
|
|
# during evaluation, we should fix the idx to get same results for many times of evaluation.
|
|
rnd_idx = np.random.randint(self.__len__(
|
|
)) if self.mode == "train" else (idx + 1) % self.__len__()
|
|
return self.__getitem__(rnd_idx)
|
|
return outs
|
|
|
|
def __len__(self):
|
|
return len(self.data_idx_order_list)
|