134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import re
|
|
import base64
|
|
from tools.infer.predict_cls import TextClassifier
|
|
from params import read_params
|
|
|
|
global_args = read_params()
|
|
if global_args.use_gpu:
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
else:
|
|
from paddle_serving_server.web_service import WebService
|
|
|
|
|
|
class TextClassifierHelper(TextClassifier):
|
|
def __init__(self, args):
|
|
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
|
|
self.cls_batch_num = args.rec_batch_num
|
|
self.label_list = args.label_list
|
|
self.cls_thresh = args.cls_thresh
|
|
self.fetch = [
|
|
"save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"
|
|
]
|
|
|
|
def preprocess(self, img_list):
|
|
args = {}
|
|
img_num = len(img_list)
|
|
args["img_list"] = img_list
|
|
# Calculate the aspect ratio of all text bars
|
|
width_list = []
|
|
for img in img_list:
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
# Sorting can speed up the cls process
|
|
indices = np.argsort(np.array(width_list))
|
|
args["indices"] = indices
|
|
cls_res = [['', 0.0]] * img_num
|
|
batch_num = self.cls_batch_num
|
|
predict_time = 0
|
|
beg_img_no, end_img_no = 0, img_num
|
|
norm_img_batch = []
|
|
max_wh_ratio = 0
|
|
for ino in range(beg_img_no, end_img_no):
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for ino in range(beg_img_no, end_img_no):
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]])
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_img_batch.append(norm_img)
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
if img_num > 1:
|
|
feed = [{
|
|
"image": norm_img_batch[x]
|
|
} for x in range(norm_img_batch.shape[0])]
|
|
else:
|
|
feed = {"image": norm_img_batch[0]}
|
|
return feed, self.fetch, args
|
|
|
|
def postprocess(self, outputs, args):
|
|
prob_out = outputs[0]
|
|
label_out = outputs[1]
|
|
indices = args["indices"]
|
|
img_list = args["img_list"]
|
|
cls_res = [['', 0.0]] * len(label_out)
|
|
if len(label_out.shape) != 1:
|
|
prob_out, label_out = label_out, prob_out
|
|
for rno in range(len(label_out)):
|
|
label_idx = label_out[rno]
|
|
score = prob_out[rno][label_idx]
|
|
label = self.label_list[label_idx]
|
|
cls_res[indices[rno]] = [label, score]
|
|
if '180' in label and score > self.cls_thresh:
|
|
img_list[indices[rno]] = cv2.rotate(img_list[indices[rno]], 1)
|
|
return img_list, cls_res
|
|
|
|
|
|
class OCRService(WebService):
|
|
def init_rec(self):
|
|
self.text_classifier = TextClassifierHelper(global_args)
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
# TODO: to handle batch rec images
|
|
img_list = []
|
|
for feed_data in feed:
|
|
data = base64.b64decode(feed_data["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
img_list.append(im)
|
|
feed, fetch, self.tmp_args = self.text_classifier.preprocess(img_list)
|
|
return feed, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
outputs = [fetch_map[x] for x in self.text_classifier.fetch]
|
|
for x in fetch_map.keys():
|
|
if ".lod" in x:
|
|
self.tmp_args[x] = fetch_map[x]
|
|
_, rec_res = self.text_classifier.postprocess(outputs, self.tmp_args)
|
|
res = {
|
|
"direction": [x[0] for x in rec_res],
|
|
"score": [str(x[1]) for x in rec_res]
|
|
}
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ocr_service = OCRService(name="ocr")
|
|
ocr_service.load_model_config(global_args.cls_model_dir)
|
|
ocr_service.init_rec()
|
|
if global_args.use_gpu:
|
|
ocr_service.prepare_server(
|
|
workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
else:
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
|
ocr_service.run_rpc_service()
|
|
ocr_service.run_web_service()
|