179 lines
7.1 KiB
Python
179 lines
7.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import re
|
|
import base64
|
|
from tools.infer.predict_rec import TextRecognizer
|
|
from params import read_params
|
|
|
|
global_args = read_params()
|
|
if global_args.use_gpu:
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
else:
|
|
from paddle_serving_server.web_service import WebService
|
|
|
|
|
|
class TextRecognizerHelper(TextRecognizer):
|
|
def __init__(self, args):
|
|
super(TextRecognizerHelper, self).__init__(args)
|
|
if self.loss_type == "ctc":
|
|
self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"]
|
|
|
|
def preprocess(self, img_list):
|
|
img_num = len(img_list)
|
|
args = {}
|
|
# Calculate the aspect ratio of all text bars
|
|
width_list = []
|
|
for img in img_list:
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
indices = np.argsort(np.array(width_list))
|
|
args["indices"] = indices
|
|
predict_time = 0
|
|
beg_img_no = 0
|
|
end_img_no = img_num
|
|
norm_img_batch = []
|
|
max_wh_ratio = 0
|
|
for ino in range(beg_img_no, end_img_no):
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for ino in range(beg_img_no, end_img_no):
|
|
if self.loss_type != "srn":
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
|
max_wh_ratio)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_img_batch.append(norm_img)
|
|
else:
|
|
norm_img = self.process_image_srn(img_list[indices[ino]],
|
|
self.rec_image_shape, 8, 25,
|
|
self.char_ops)
|
|
encoder_word_pos_list = []
|
|
gsrm_word_pos_list = []
|
|
gsrm_slf_attn_bias1_list = []
|
|
gsrm_slf_attn_bias2_list = []
|
|
encoder_word_pos_list.append(norm_img[1])
|
|
gsrm_word_pos_list.append(norm_img[2])
|
|
gsrm_slf_attn_bias1_list.append(norm_img[3])
|
|
gsrm_slf_attn_bias2_list.append(norm_img[4])
|
|
norm_img_batch.append(norm_img[0])
|
|
|
|
norm_img_batch = np.concatenate(norm_img_batch, axis=0)
|
|
if img_num > 1:
|
|
feed = [{
|
|
"image": norm_img_batch[x]
|
|
} for x in range(norm_img_batch.shape[0])]
|
|
else:
|
|
feed = {"image": norm_img_batch[0]}
|
|
return feed, self.fetch, args
|
|
|
|
def postprocess(self, outputs, args):
|
|
if self.loss_type == "ctc":
|
|
rec_idx_batch = outputs[0]
|
|
predict_batch = outputs[1]
|
|
rec_idx_lod = args["save_infer_model/scale_0.tmp_0.lod"]
|
|
predict_lod = args["save_infer_model/scale_1.tmp_0.lod"]
|
|
indices = args["indices"]
|
|
rec_res = [['', 0.0]] * (len(rec_idx_lod) - 1)
|
|
for rno in range(len(rec_idx_lod) - 1):
|
|
beg = rec_idx_lod[rno]
|
|
end = rec_idx_lod[rno + 1]
|
|
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
|
preds_text = self.char_ops.decode(rec_idx_tmp)
|
|
beg = predict_lod[rno]
|
|
end = predict_lod[rno + 1]
|
|
probs = predict_batch[beg:end, :]
|
|
ind = np.argmax(probs, axis=1)
|
|
blank = probs.shape[1]
|
|
valid_ind = np.where(ind != (blank - 1))[0]
|
|
if len(valid_ind) == 0:
|
|
continue
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
rec_res[indices[rno]] = [preds_text, score]
|
|
elif self.loss_type == 'srn':
|
|
char_num = self.char_ops.get_char_num()
|
|
preds = rec_idx_batch.reshape(-1)
|
|
elapse = time.time() - starttime
|
|
predict_time += elapse
|
|
total_preds = preds.copy()
|
|
for ino in range(int(len(rec_idx_batch) / self.text_len)):
|
|
preds = total_preds[ino * self.text_len:(ino + 1) *
|
|
self.text_len]
|
|
ind = np.argmax(probs, axis=1)
|
|
valid_ind = np.where(preds != int(char_num - 1))[0]
|
|
if len(valid_ind) == 0:
|
|
continue
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
preds = preds[:valid_ind[-1] + 1]
|
|
preds_text = self.char_ops.decode(preds)
|
|
rec_res[indices[ino]] = [preds_text, score]
|
|
else:
|
|
for rno in range(len(rec_idx_batch)):
|
|
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
|
|
if len(end_pos) <= 1:
|
|
preds = rec_idx_batch[rno, 1:]
|
|
score = np.mean(predict_batch[rno, 1:])
|
|
else:
|
|
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
|
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
|
preds_text = self.char_ops.decode(preds)
|
|
rec_res[indices[rno]] = [preds_text, score]
|
|
return rec_res
|
|
|
|
|
|
class OCRService(WebService):
|
|
def init_rec(self):
|
|
self.text_recognizer = TextRecognizerHelper(global_args)
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
# TODO: to handle batch rec images
|
|
img_list = []
|
|
for feed_data in feed:
|
|
data = base64.b64decode(feed_data["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
img_list.append(im)
|
|
feed, fetch, self.tmp_args = self.text_recognizer.preprocess(img_list)
|
|
return feed, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
outputs = [fetch_map[x] for x in self.text_recognizer.fetch]
|
|
for x in fetch_map.keys():
|
|
if ".lod" in x:
|
|
self.tmp_args[x] = fetch_map[x]
|
|
rec_res = self.text_recognizer.postprocess(outputs, self.tmp_args)
|
|
res = {
|
|
"pred_text": [x[0] for x in rec_res],
|
|
"score": [str(x[1]) for x in rec_res]
|
|
}
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ocr_service = OCRService(name="ocr")
|
|
ocr_service.load_model_config(global_args.rec_model_dir)
|
|
ocr_service.init_rec()
|
|
if global_args.use_gpu:
|
|
ocr_service.prepare_server(
|
|
workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
else:
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
|
ocr_service.run_rpc_service()
|
|
ocr_service.run_web_service()
|