99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import sys
|
|
import numpy as np
|
|
import paddle
|
|
import signal
|
|
import random
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
import copy
|
|
from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler
|
|
import paddle.distributed as dist
|
|
|
|
from ppocr.data.imaug import transform, create_operators
|
|
from ppocr.data.simple_dataset import SimpleDataSet
|
|
from ppocr.data.lmdb_dataset import LMDBDataSet
|
|
from ppocr.data.pgnet_dataset import PGDataSet
|
|
|
|
__all__ = ['build_dataloader', 'transform', 'create_operators']
|
|
|
|
|
|
def term_mp(sig_num, frame):
|
|
""" kill all child processes
|
|
"""
|
|
pid = os.getpid()
|
|
pgid = os.getpgid(os.getpid())
|
|
print("main proc {} exit, kill process group " "{}".format(pid, pgid))
|
|
os.killpg(pgid, signal.SIGKILL)
|
|
|
|
|
|
signal.signal(signal.SIGINT, term_mp)
|
|
signal.signal(signal.SIGTERM, term_mp)
|
|
|
|
|
|
def build_dataloader(config, mode, device, logger, seed=None):
|
|
config = copy.deepcopy(config)
|
|
|
|
support_dict = ['SimpleDataSet', 'LMDBDataSet', 'PGDataSet']
|
|
module_name = config[mode]['dataset']['name']
|
|
assert module_name in support_dict, Exception(
|
|
'DataSet only support {}'.format(support_dict))
|
|
assert mode in ['Train', 'Eval', 'Test'
|
|
], "Mode should be Train, Eval or Test."
|
|
|
|
dataset = eval(module_name)(config, mode, logger, seed)
|
|
loader_config = config[mode]['loader']
|
|
batch_size = loader_config['batch_size_per_card']
|
|
drop_last = loader_config['drop_last']
|
|
shuffle = loader_config['shuffle']
|
|
num_workers = loader_config['num_workers']
|
|
if 'use_shared_memory' in loader_config.keys():
|
|
use_shared_memory = loader_config['use_shared_memory']
|
|
else:
|
|
use_shared_memory = True
|
|
if mode == "Train":
|
|
# Distribute data to multiple cards
|
|
batch_sampler = DistributedBatchSampler(
|
|
dataset=dataset,
|
|
batch_size=batch_size,
|
|
shuffle=shuffle,
|
|
drop_last=drop_last)
|
|
else:
|
|
# Distribute data to single card
|
|
batch_sampler = BatchSampler(
|
|
dataset=dataset,
|
|
batch_size=batch_size,
|
|
shuffle=shuffle,
|
|
drop_last=drop_last)
|
|
|
|
data_loader = DataLoader(
|
|
dataset=dataset,
|
|
batch_sampler=batch_sampler,
|
|
places=device,
|
|
num_workers=num_workers,
|
|
return_list=True,
|
|
use_shared_memory=use_shared_memory)
|
|
|
|
return data_loader
|